"Synthesis of Sea Urchin-Like NiCo2O4 via Charge-Driven Self-Assembly S" by Bin Wang, Chi-Wing Tsang et al.
 

Document Type

Journal Article

Publication Date

2019

Keywords

Hydrothermal synthesis, NiCo2O4, Self-assembly, Lithium-ion batteries

DOI

10.1186/s11671-018-2819-4

Abstract

In this study, hydrothermal synthesis of sea urchin-like NiCo2O4 was successfully demonstrated by a versatile charge-driven self-assembly strategy using positively charged poly(diallydimethylammonium chloride) (PDDA) molecules. Physical characterizations implied that sea urchin-like microspheres of ~ 2.5 μm in size were formed by self-assembly of numerous nanoneedles with a typical dimension of ~ 100 nm in diameter. Electrochemical performance study confirmed that sea urchin-like NiCo2O4 exhibited high reversible capacity of 663 mAh g−1 after 100 cycles at current density of 100 mA g−1. Rate capability indicated that average capacities of 1085, 1048, 926, 642, 261, and 86 mAh g−1 could be achieved at 100, 200, 500, 1000, 2000, and 3000 mA g−1, respectively. The excellent electrochemical performances were ascribed to the unique micro/nanostructure of sea urchin-like NiCo2O4, tailored by positively charged PDDA molecules. The proposed strategy has great potentials in the development of binary transition metal oxides with micro/nanostructures for electrochemical energy storage applications.

Source Publication

Nanoscale Research Letters

Volume Number

14

Issue Number

6

ISSN

1556-276X

First Page

1

Last Page

9

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 11
  • Usage
    • Downloads: 88
    • Abstract Views: 18
  • Captures
    • Readers: 8
see details

Share

COinS