Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by Fenton-like reaction over zerovalent iron-based catalyst

Document Type

Journal Article

Publication Date

2015

Keywords

Anionic surfactants, Fenton-like oxidation, Greywater treatment, Zerovalent iron

DOI

10.1080/09593330.2014.992481

Abstract

There is an increasing interest to recycle greywater for meeting non-portable water demand. However, linear alkylbenzene sulphonates (a form of anionic surfactants) that are commonly found in greywater are less biodegradable at moderate to high concentrations. A fenton-like system is a relatively economic advanced oxidation process that can potentially be used for surfactant degradation in greywater treatment. This study investigated the feasibility of zerovalent iron (ZVI)-mediated Fenton's oxidation of sodium dodecylbenzene sulphonate (SDBS) using Fe0/H2O2 and Fe2+/Fe0/H2O2 systems under a range of operating conditions. For the Fe0/H2O2 binary system, the initial pH value and Fe0 dosage played important roles in final degradation efficiency. For the Fe2+/Fe0/H2O2 ternary systems, a small amount of Fe2+ (0.5–1.7 mM) contributed a synergistic effect to promote iron recycling and SDBS degradation. Approximately, 90% of SDBS mineralization efficiency was accomplished within 15 min at a pH range from 3.0 to 6.5, using 18 mM Fe0 and 15 mM H2O2. However, the removal kinetics was rate-limited by Fe2+ dissolution from the ZVI surfaces. The Fenton-like process of the Fe2+/Fe0/H2O2 ternary system also presents a promising treatment method for synthetic greywater, in which 90% TOC removal was achieved within the first 10 min; 78% COD and 91% BOD5 were achieved after 120 min of reaction.

Source Publication

Environmental Technology

Volume Number

36

Issue Number

11

First Page

1423

Last Page

1432

This document is currently not available here.

Share

COinS