Using bench press load to predict upper body exercise loads in physically active individuals

Document Type

Journal Article

Publication Date



Strength training, Resistance training, Training load, Weight, Repetition maximum


This study investigated whether loads for assistance exercises of the upper body can be predicted from the loads of the bench press exercise. Twenty-nine physically active collegiate students (age: 22.6 ± 2.5; weight training experience: 2.9 ± 2.1 years; estimated 1RM bench press: 54.31 ± 14.60 kg; 1RM: body weight ratio: 0.80 ± 0.22; BMI: 22.7 ± 2.1 kg·m-2) were recruited. The 6RM loads for bench press, barbell bicep curl, overhead dumbbell triceps extension, hammer curl and dumbbell shoulder press were measured. Test-retest reliability for the 5 exercises as determined by Pearson product moment correlation coefficient was very high to nearly perfect (0.82-0.98, p < 0.01). The bench press load was significantly correlated with the loads of the 4 assistance exercises (r ranged from 0.80 to 0.93, p < 0.01). Linear regression revealed that the bench press load was a significant (R2 range from 0.64 to 0.86, p < 0.01) predictor for the loads of the 4 assistance exercises. The following 6RM prediction equations were determined: (a) Hammer curl = Bench press load (0.28) + 6.30 kg, (b) Barbell biceps curl = Bench press load (0.33) + 6.20 kg, (c) Overhead triceps extension = Bench press load (0.33) - 0.60 kg, and (d) Dumbbell shoulder press = Bench press load (0.42) + 5.84 kg. The difference between the actual load and the predicted load using the four equations ranged between 6.52% and 8.54%, such difference was not significant. Fitness professionals can use the 6RM bench press load as a time effective and accurate method to predict training loads for upper body assistance exercises.

Source Publication

Journal of Sport Science & Medicine

Volume Number


Issue Number


First Page


Last Page


This document is currently not available here.