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A B S T R A C T

Material entrainment can significantly magnify debris flow volume and increase its destructive power. Despite
great research efforts, entrainment is still not well understood. To meet the needs for debris flow simulation and
hazard analysis, it is of practical significance to understand and evaluate existing entrainment models. In this
study, we evaluate three entrainment models on an integrated single-phase continuum debris flow simulation
platform. The well-documented Tsing Shan debris flow in 1990 in Hong Kong, with an initial landslide volume of
2500 m3 and a final deposit volume of 20,400 m3, is used as a benchmark to compare the three models. The
characteristics and performance of each model and its model parameters are discussed. Although numerical
results achieve reasonable agreement with detailed field investigations, some parameters are still determined
empirically and subjectively. Despite of the imperfection, these models can be used for debris flow hazard
analysis in the Hong Kong region with similar conditions. More physically-based entrainment models con-
sidering two-phase flow need to be adopted and further developed in the future.

1. Introduction

Debris flow often occurs in mountainous areas amidst heavy rain-
fall, for example in Hong Kong. It could be very disastrous, swallowing
and destroying nearly everything on its marching path and causing
intolerable threats to unprotected people's lives, properties and infra-
structures (Mergili et al., 2017, 2018a). Debris flow can carry a large
amount of solid materials (mainly soil and rock, often with some wood
debris) off slopes and channels through entrainment or erosion; the
magnitude of the final debris flow volume could be many times of its
initial volume (Iverson et al., 2011; Pudasaini and Fischer, 2016). The
destructive power of a debris flow can be grossly underestimated if the
entrainment of material is ignored. Therefore, studying the entrainment
process is crucial to debris flow hazard analysis and risk assessment.

Material entrainment is a complex process. Entrainment mechan-
isms include bed erosion and instability of stream banks undercut by
bed erosion (Hungr et al., 2005). The erosion of bed material is a result
of drag, shear and other forces acting at the base of the flow, aided by

the loss of shear strength due to rapid undrained loading (Hutchinson
and Bhandari, 1971), impact loading, or liquefaction of the saturated
channel fills (Sassa and Wang, 2005). There are many volume-magni-
fying debris flow events in mountainous areas. In Hong Kong, the Tsing
Shan area experienced a typical volume-magnifying debris flow in 1990
(Fig. 1). The initial landslides of about 2500 m3 evolved into a large
debris flow of about 20,400 m3. King (2013) conducted comprehensive
field investigations and laboratory tests on this debris flow. Similar
debris flow enlargement events also occurred worldwide, as shown in
Table 1. The enlargement of debris flow volume plays a very important
role in determining the final magnitude of debris flows (Pudasaini and
Fischer, 2016).

Great efforts have been made to develop numerical models for si-
mulating debris flow mobility (e.g. O'Brien et al., 1993; Hungr and
McDougall, 2009; Pastor et al., 2009; Quan Luna et al., 2012;
Pudasaini, 2012; Dai et al., 2014; van Asch et al., 2014; Chen and
Zhang, 2015; Chen et al., 2017; Mergili et al., 2018a,b; Shen et al.,
2017, 2018; Li et al., 2018, 2019; Zhou et al., 2019), as well as to
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conduct laboratory and field experiments (e.g. Iverson et al., 2011; Ren
et al., 2018; Wang et al., 2018; Yang et al., 2018). Physically-based
entrainment models have been embedded in continuum-based numer-
ical models, which are generally depth-integrated and reduced to two-
dimensional problems (e.g. Iverson and Ouyang, 2015; Pudasaini and
Fischer, 2016; Li et al., 2018). Besides, basal entrainment models have
been extensively applied (e.g. McDougall and Hungr, 2005; Medina
et al., 2008; Iverson et al., 2011; Iverson, 2012; Quan Luna et al., 2012;
Iverson and Ouyang, 2015; Li et al., 2018; Zhang et al., 2019). Parti-
cularly, Ouyang et al. (2015) adopted an entrainment rate formula that
satisfies a boundary momentum jump condition and combines the
Coulomb friction model and the Voellmy friction model to overcome
their individual flaws. Pudasaini and Fischer (2016) developed a fully
mechanical two-phase erosion model and addressed several long-
standing issues including the rigorous proof of erosion-enhanced mo-
bility in mass flows and removing the singularity problem in previously

models. Kwan and Sun (2007) proposed a modelling program, 3dDMM
(3d Debris Mobility Model), to simulate the runout process of the 1990
Tsing Shan debris flow as a benchmarking exercise for landslide mo-
bility simulation. This model simulates the runout process and de-
position area well. The entrainment process in 3dDMM is on a grid basis
at every time step and the erosion rate is assumed to be proportional to
the grid velocity and debris depth.

Despite the aforementioned great efforts in studying the entrain-
ment mechanisms and developing numerical models, the entrainment
process is very complex and not yet well understood. As a result, the
simulation of entrainment in debris flows is still very challenging. To
meet the needs for debris flow simulation and model selection, it is of
practical significance to evaluate and compare practical entrainment
analysis models.

The objective of this study is to evaluate three entrainment analysis
models for debris flow simulation. The 1990 Tsing Shan debris flow,

Fig. 1. The 10 m contours of the 1990 Tsing Shan debris flow site. A landslide of about 350 m3 initiated the debris flow. The curved area indicates the flow
inundation area. The detached ground mass dashed down the hill for about 100 m and triggered a larger landslide of about 2000 m3, which subsequently developed
into a debris flow of about 20,000 m3 through entrainment of bed colluvium materials along its runout path. (Insert photo, courtesy of Hong Kong Slope Safety
Website: http://hkss.cedd.gov.hk/hkss/eng/index.aspx, Geotechnical Engineering Office, Civil Engineering and Development Department).

Table 1
Summary of debris flow enlargement cases.

Date Location Initial volume (m3) Final volume (m3) Amplification factor Initiation mechanism Reference

11 Sept. 1990 Tsing Shan, Hong Kong 2500 20,400 8.2 Landslide transformation King (2013)
12 June 1997 Dolomites, Italy 600 6000 10.0 Erosion Berti et al. (1999)
11 July 1997 British Columbia, Canada 25,000 92,000 3.7 Landslide transformation Jakob et al. (2000)
29 June 1999 Hiroshima, Japan 250 5000 20.0 Landslide transformation Wang et al. (2003)
8 May 2004 Fjærland, Norway 25,000 240,000 9.6 Erosion Breien et al. (2008)
14 Aug. 2010 Yingxiu, China 183,000 805,000 4.4 Landslide transformation/Erosion Li et al. (2012)
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which is a typical well-documented debris flow and entrainment case, is
used as a benchmark to assess the performance of these entrainment
models on an integrated debris flow simulation tool EDDA 2.0 (Shen
et al., 2018). In the present study, the entrainment process of the Tsing
Shan debris flow is simulated using three entrainment models. The
performance of these entrainment models is evaluated and the char-
acteristics of each model are discussed. The results serve as a reference
for selecting numerical models for hazard analysis and risk assessment,
which further emphasizes the importance of properly simulating debris
flow events by employing advanced two-phase mechanical erosion
models.

2. The 1990 Tsing Shan debris flow

2.1. Study area

Tsing Shan is located in western New Territories, Hong Kong, about
2 km west of Tuen Mun Valley. The study area includes the whole
catchment from the ridgeline at the summit of Tsing Shan to the cut
slope and platform in the downstream area (Fig. 1). The summit rises to
583 mPD (meters above Hong Kong Principal Datum) and is the highest
peak in the study area. Chan et al. (1991) developed a chainage to
indicate the distance from the starting point to anywhere along the
debris flow path. “Ch” means the chainage line. For example, “Ch 0”
denotes the starting point of the chainage line and “Ch 500” denotes the
chainage point 500 m downstream the starting point. The whole debris
flow path can be divided into two parts at the mouth of the drainage
line (Ch 500): the upper slope area and the lower deposition area. The
total relief in altitude in the study area is 310 m, shown in the discrete
elevation model (Fig. 2a).

The detailed engineering geological map of this area was created by
Geotechnical Engineering Office (GEO) shown in drawings GEO/P/
PTE/1 and GEO/P/PTE/2 in GEO Report No. 281 (King, 2013). In this
paper, the geological settings of the debris flow area can be broadly
classified into three types (Fig. 2b): the fine grained granite in the upper
part; the sedimentary rocks containing sandstone, siltstone and mud-
stone in the middle part; and the volcanic rock in the lower part. The
superficial deposits above the bedrock are Pleistocene and Holocene,
referred to as colluvium in this study.

The vegetation on the summit and upper slopes is generally only
grass. On the side slopes are sparse patches of scrubby bushes and small
trees. The distribution becomes denser and the vegetation becomes

larger closer to the main valley.

2.2. The debris flow event

A debris flow occurred in the study area in the early morning on 11
Sept. 1990. This debris flow was witnessed by a local resident, who was
awaken by the pitter-patter of heavy rainfall, light vibrations and
noises, and heard the loud noises of the debris flow later at about 03:00.
The noises continued for less than 30 min. Therefore, the debris flow
was shown to start sometime before 03:00 and lasted for about half an
hour. After the occurrence of the debris flow, the GEO has conducted a
comprehensive study of the disaster (King, 2013). Digital elevation data
with high resolution of 5 m has been prepared to facilitate numerical
simulation of the debris flow. Detailed field investigations and aerial
photo interpretation were carried out to deliver thorough information
about the geology and geomorphology of the study area. Basic in-
formation about soil and debris deposits was also collected, such as
particle size distribution. The entrainment and deposition process along
the debris flow path was well documented, which provides evidence to
validate debris flow entrainment models.

The Tsing Shan debris flow was a complex geomorphological event.
The whole process might be divided into four sub-events. Initially, a
small “trigger” landslide of about 350 m3 at the origin of the track was
triggered by heavy rainfall. Then another larger “parent” landslide at
Ch 100 with a volume of about 2500 m3 was initiated by the “trigger”
mass and intensified the debris flow. After that, the landslide materials
formed large pulses of channelized debris flow that eroded and en-
trained colluvium. Then the channelized debris flow surged down the
drainage line, entraining colluvium of about 19,000 m3. Finally, the
debris flow accumulated in the deposition area and the ongoing rainfall
continued to cause erosion of the debris deposit beyond the mouth of
the drainage line. Inferred from the observed relatively uniform and
thin deposit, the main mechanism of debris movement in this event is
“flowing” among several possible mechanisms including “rolling,
bouncing and sliding”.

Some physical parameters were also interpreted. The maximum
erosion depth was in the range of 3–4 m. The flowing velocity was
estimated to be 16.5 m/s at Ch 350 and 12.5 m/s at Ch 475 by using the
equations from Johnson and Rodine (1984). Finally, the debris flow
deposited beyond the drainage outlet and formed a deposition fan of
20,400 m3, with the largest depth over 2 m. The material composition
of both the source and deposit materials was obtained through soil tests

Fig. 2. Digital elevation model (a) and surface lithology (b) of the study area. The debris flow covered area is marked with a red line. More details of cross sections
and lithology are available at GEO's website: https://www.cedd.gov.hk/eng/publications/geo/geo-reports/geo_rpt281/index.html. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version of this article.)

P. Shen, et al. Engineering Geology 270 (2020) 105581

3

https://www.cedd.gov.hk/eng/publications/geo/geo-reports/geo_rpt281/index.html


and field investigations. The source materials were mainly granite
colluvium (slope deposits) and, to a lesser extent, weathered bed rocks
(granite, sedimentary rock and volcanic rock). The materials eroded
and entrained along the steep drainage line were bouldery colluvium.
The deposit mass was mainly poorly sorted clasts up to boulder size,
supported by a poorly sorted mixture comprising granite boulders (up
to 5 m diameter) and cobbles with sand and gravel as well as silt and
clay. Vegetation, broken concrete, pipes and general garbage were also
present in the deposit.

More detailed study indicates that the “parent” landslide was most
relevant to the large debris flow for several reasons: (1) it was located at
a high elevation of 300 mPD; (2) its volume was more than 2000 m3,
which to some extent was responsible for the final debris flow volume;
(3) the presence of sufficient fine contents in the landslide reduced the
soil permeability to form slurry flow; (4) its loose state caused con-
tractive shearing behaviour and positive pore pressure build-up, redu-
cing the flow resistance and inducing a rapid failure process; (5) its
location in a drainage line led to concentration of the surface and
subsurface flow.

3. Data and methods

3.1. Data

A digital terrain model (DEM) used in this study was generated after
the 1990 debris flow event by GEO with a spatial resolution of 5 m. The
two landslides were also depicted in the DEM. Detailed entrainment
and deposition volumes within each sub-segment along the chainage
can be found in the GEO Report No. 281 (King, 2013), as well as other
properties for source materials and deposits such as grain size dis-
tribution. The post-event cross sections along the chainage with field
checking are also available. The rainfall process from 10 Sept. to 11
Sept. 1990 associated with the debris flow was recorded at 15 minute-
interval at rain gauge N07 installed by Hong Kong Observatory that was
the closest rain gauge to the debris flow catchment. This rain gauge was
located in the Tuen Mun Valley, less than 1.5 km from the catchment.
The readings at gauge N07 may reasonably be considered the maximum
that was likely to have fallen at the site. The hourly rainfall data from
N07 is presented in Fig. 3.

3.2. Simulation framework

An integrated numerical program EDDA 2.0 (Shen et al., 2018) is
used to simulate the initiation and dynamics of debris flows. The
flowing mass is considered as a continuous flow. The governing equa-
tions, including the mass conservation and momentum equations, are in
a depth-integrated form and solved in two dimensions using a finite
difference scheme. The physical processes of rainfall infiltration, en-
trainment, and deposition of debris can be included. Infiltration is
calculated by comparing the rainfall intensity with the saturated per-
meability of the surface soil; runoff will be generated if the rainfall
intensity is larger than the saturated permeability. Three entrainment
models are adopted in the program, which will be introduced in the
next section. A digital elevation model is used to discretize the study
area into a grid system. Every cell in the grid system carries topo-
graphic, geological, geotechnical and hydrological information for nu-
merical simulation. The final runout distance, inundation area, de-
position volume and entrainment magnitude of the debris flow can be
compared with the field observations. Details of the program and its
numerical scheme have been presented in Chen and Zhang (2015) and
Shen et al. (2018).

3.3. Entrainment models

Material entrainment is a very complex and rapid process. Some of
the mechanisms underlying entrainment in debris flow are summarised
by Hungr et al. (2005) such as bed destabilization, erosion and bank
collapse. In this study, three entrainment rate models, including one
quasi-mechanical and two empirical models, are compared (Fig. 4): (1)
the erosion model proposed by Iverson and Ouyang (2015) (referred to
“Iverson-Ouyang model”, Fig. 4a); (2) the linear erosion model with the
erosion resistance coefficients determined by field erosion tests (e.g.
Graf, 1984; Hanson and Simon, 2001; Julian and Torres, 2006; Chang
et al., 2011) (referred to “Linear-Ex model”, Fig. 4b); and (3) the linear
erosion model with the bed erosion described as a Mohr-Coulomb
failure process (e.g. Medina et al., 2008; Quan Luna et al., 2012) (re-
ferred to “Linear-MC model”, Fig. 4c).

The Iverson-Ouyang entrainment model satisfies a boundary mo-
mentum jump condition, assuming a constant density of the flowing
mixture and ignoring the effects from topography:

Fig. 3. Rainfall data from rain gauge No. N07 from 10 Sept. to 11 Sept. 1990 (adapted from King, 2013).
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= =i z
t V
b s

(1)

where zb is the elevation (m) of erodible bed layer; t is time (s); ρ is the
density of debris flow mixture; V is the depth-averaged debris flow
velocity; τ is the total basal shear stress acting on the erodible surface
from the flow layer and τs is the total shear resistance of the erodible
layer surface (Pa). The basal resistance shear stress τs is assumed to
follow the Coulomb failure criterion considering the degree of lique-
faction of the bed material caused by the overriding debris flow
(Fig. 4a):

= +c gh(1 ) cos tans bed
2 (2)

where c and ϕbed are the cohesion (Pa) and friction angle (°) of the
erodible bed material; g is the gravitational acceleration; β is the bed
slope; cos2β here accounts for the effective normal stress on the inclined
channel bed assuming a hydrostatic pressure distribution within the
debris flow; ρ is the density of debris flow mixture; λ is an empirical
pore pressure ratio that numerically reflects the degree of liquefaction
of the erodible bed, obtained from trial and error tests. In a debris flow
event, the degree of liquefaction evolves dynamically as the fluid
fraction evolves (Pudasaini, 2012; Pudasaini and Krautblatter, 2014).
Parameter λ ranges from 0 (totally dry bed) to 1 (completely saturated
soil). Numerical tests suggest that values of λ ranging from 0.5 to 0.8
give predictions of entrainment rates consistent with measurements in
large-scale debris-flow experiments in which wet sediment beds lique-
fied almost completely (Iverson, 2012). It is necessary to mention that
Eq. (1) produces singularity as the flow velocity becomes very small.
Similarly, as the solid volume fraction evolves during the flow and
entrainment process, the mixture density evolves dynamically. These
shortcomings have been removed by Pudasaini and Fischer (2016) by
presenting a mechanical two-phase entrainment model (Ren et al.,
2018; Wang et al., 2018; Yang et al., 2018; Li et al., 2019). In the
present study, Eq. (2) is used for simplicity. A certain threshold velo-
city, vthreshold, is set to avoid impossible large entrainment rate at very

small V values (e.g. Lê and Pitman, 2009; Ouyang et al., 2015).
Other two erosion models, called Linear-Ex and Linear-MC, are of

empirical nature with several parameters. In the Linear-Ex model, the
erosion rate can be described by the commonly used linear empirical
equation where the critical erosive stress τc and the coefficient of
erodibility Ke are directly determined from experiments (Fig. 4b):

= =i z
t

K ( )b
e c (3)

where τ is the total basal shear stress acting on the erodible surface from
the flow layer (Pa); Ke is the coefficient of erodibility (m3/N-s); τc is the
critical erosive shear stress at the initiation of bed erosion (Pa). The
latter two parameters describe the erosion resistance of the bed soil and
can be measured in-situ using a jet index method (e.g. Chang et al.,
2011; Zhu and Zhang, 2016).

In the Linear-MC model, the bed erosion is considered as a Mohr-
Coulomb failure process. Similar to the Linear-Ex model, the erosion
rate is also described by a linear equation:

= =i z
t

K ( )b
mc mc (3)

where Kmc is a back-analysed parameter and the critical erosive shear
stress τmc is calculated by considering limit equilibrium of partly sus-
pended particles using the Mohr-Coulomb equation (Fig. 4c):

= +c C C gh(1 ) ( ) cos tanmc s v s w bed
2 (4)

where c and ϕbed are the cohesion (Pa) and friction angle (°) of the
erodible bed material, respectively; β is the bed slope; Cs is the coeffi-
cient of suspension of solid particles and (1 - Cs) represents the portion
of solid particles that are in contact; ρs is the density of solid particles;
ρw is the density of water.

The shear stress, τ, can be computed as follows:

= ghSf (5)

where ρ is the density of debris flow mixture and Sf is the energy

Fig. 4. Physical meaning of three entrainment models: (a) Iverson-Ouyang model: the entrainment rate formula must satisfy a boundary momentum jump condition;
the density of the flowing mixture is assumed to be constant and the effects from topography are neglected; the critical erosive shear stress τs is assumed to obey the
Coulomb failure criterion considering the degree of liquefaction of the bed material caused by the passing debris flow. (b) Linear-Ex model: the erosion rate is
described by the commonly used linear empirical equation; the critical erosive stress τc and the coefficient of erodibility Ke are directly determined from field tests. (c)
Linear-MC model: the erosion rate is also described by the linear equation with the critical erosive stress τmc assumed to obey the Coulomb failure criterion
considering the effects of suspended particles in the debris flow mixture.
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resistance slope.
Entrainment occurs when the volumetric sediment concentration of

the debris flow, Cv, is smaller than an equilibrium value, Cv∞. Here, Cv
is defined as the ratio of the volume of solid materials to the volume of
water and solid materials. The equilibrium volumetric sediment con-
centration Cv∞ proposed by Takahashi et al. (1992) is adopted in this
study:

=C
tan

( )(tan tan )v
w

s w bed (6)

where ρs is the density of soil particles (kg/m3); ρw is the density of
water (kg/m3); and β is the bed slope.

3.4. Rheological model

The fluid flow is described using a suitable rheological model. Some
rheological models are frequently used, such as the Coulomb viscous
model (Laigle and Coussot, 1997), the Voellmy friction model (Medina
et al., 2008), and the quadratic model (O'Brien et al., 1993). In the
program, the quadratic rheology is used to consider the combined ef-
fects of different resistance terms. The resistance slope, Sf, is the sum of
the yield slope, the viscous slope and the turbulent dispersive slope. The
quadratic rheology expresses Sf as

= + +S
gh

KµV
gh

n V
h8f

y td
2

2 2

4/3 (7)

where h and V are the flow depth (m) and depth-integrated velocity (m/
s), respectively; ρ is the mass density (kg/m3) of the debris flow mix-
ture; τy and μ are the yield stress (Pa) and dynamic viscosity (Pa∙s) of the
debris flow mixture, respectively; K is a laminar flow resistance coef-
ficient; ntd is an equivalent Manning's coefficient accounting for both
the turbulent behaviour and the resistance arising from solid-particle
contacts. The following empirical relationships by O'Brien and Julien
(1988) are adopted to estimate τy and μ:

= ey
C

1 v1 (8)

=µ e C
2 v2 (9)

where αi and βi are empirical coefficients determined by laboratory
experiments. The equivalent Manning coefficient ntd is expressed as
(FLO-2D Software Inc., 2009):

=n ne0.0538td
C6.0896 v (10)

where n is the Manning coefficient.

3.5. Material deposition

The solid materials of a debris flow start to deposit when the flow

velocity is smaller than a critical value and the volumetric sediment
concentration Cv is larger than the equilibrium value, Cv∞. The critical
flow velocity proposed by Takahashi et al. (1992) is:

=V
d

g h2
5

sin
0.02e

e

s50

0.5
1 1.5

(11)

where

=
+

C
C

tan
( ) tan

( )e
v s w bed

v s w w (12)

= C
C

1v

v

1
1/3

(13)

= +C ( )v s w w (14)

in which d50 is the mean particle size of the debris flow material, which
is assumed to be the same as that of the landslide deposit since the
deposit soil is the source material of the debris flow. The rate of de-
position can be expressed as

=i V
pV

C C
C

V1d
e

v v

v (15)

where δd is a coefficient of deposition rate; p (< 1) is a dimensionless
coefficient accounting for the location difference, and a value of 0.67 is
recommended (Takahashi et al., 1992); Cv⁎ is the volume fraction of
solids in the erodible bed. It should be noted that, in the deposition
model, some coefficients such as deposition rate δd and location para-
meter p were determined empirically, which would be better auto-
matically determined by the model during the interactive flow and
deposition process between the applied shear stress by the flow and the
resistance from the basal surface (Pudasaini and Fischer, 2016).

3.6. Model parameters

In this study all the bed soil properties are assumed to be uniform
over the entire study area without considering spatial uncertainties.
The parameters are summarised in Tables 2–4. The superficial erodible
soil is the first to be physically defined. Geotechnical Control Office
(GCO) conducted a series of comprehensive experiments and field in-
vestigations on the geology, hydrology and surficial soil properties all
over Hong Kong. According to Geotechnical Control Office (1982), test
results for shear strength are scattered. We select a least square re-
gression line to determine cohesion c and friction angle ϕbed, which are
set as 5.0 kPa and 42°, respectively. A typical value of saturated per-
meability of 1.0 × 106 (m/s) is selected. The density of solid material,
ρs, is given as 2650 kg/m3. The thickness of erodible bed is correlated to
the slope angle, and an empirical relation established by Gao et al.
(2016) is used to generate an erodible bed thickness map.

Table 2
Rheological and computational parameters for debris flow.

Manning's coefficient Laminar flow resistance τy = α1eβ1Cv μ = α2eβ2Cv Deposition coefficient Coefficient of suspension of solid particles

n K α1 β1 α2 α2 δd Cs

0.16 2500 1.27 × 10−3 22.8 2.97 × 10−4 18.8 0.2 0.4

Table 3
Soil properties.

Mean grain size
(mm)

Solid particle density
(kg/m3)

Saturated permeability (m/s) Volume fraction of solids in
erodible bed

Friction angle of erodible
bed (°)

Cohesion of erodible bed
(kPa)

d50 ρs ks Cv⁎ ϕbed c

20 2650 1.0 × 106 0.5 42.0 5.0

P. Shen, et al. Engineering Geology 270 (2020) 105581

6



Other parameters such as d50 and rheological parameters αi and βi
are closely related to the particle size distribution. Based on the particle
size distributions of the Tsing Shan debris samples (King, 2013), the
clay to silt content ranges from 10 to 20% of the fraction finer than
20 mm. Sosio et al. (2007) conducted similar investigations on a debris
flow in Central Italian Alps. The clay to silt content ranges from 5 to
15% of the fraction finer than 20 mm. As shown in Fig. 5, the particle
size distribution curves for two events are similar. Despite the differ-
ence in the geological conditions of the two study areas, the rheology
parameters determined for that event can be adopted in this study
considering the similarity in the particle size composition. Therefore, α1
and β1 for τy are taken as 1.27 × 10−3 and 22.8, respectively; α2 and β2
for μ are taken as 2.97 × 10−4 and 18.8, respectively (Sosio et al.,
2007). As mentioned previously, the vegetation cover in the study area
is not dense and the ground cover can be classified as sparse vegetation
following FLO-2D Software Inc. (2009), leading to a value of K as 2500.
The Manning's coefficient is set to be 0.16. Through back analysis, the
volume fraction of solids in the erodible bed, Cv⁎, is set to be 0.5.

4. Simulation results

The simulation started from 1 h before the mobilization of the two
landslides, i.e. 2:00 am on 11 September 1990. The corresponding
rainfall process is shown in Fig. 3. After 1 h of simulation, the mass of
the “Trigger” and “Parent” landslides is released at the location of the
“Parent” landslide (Fig. 1). The landslide mass is treated as a fluid with
the given rheological properties. Possible transformation from landslide
to debris flow is not considered.

The final distribution of erosion and deposition depths at the end of
simulation are shown in Fig. 6. For the Iverson-Ouyang model (Fig. 6a),
the simulated eroded area is located between Ch 100 and Ch 500, which
is the upper entrainment area. The simulated erosion area mostly lies
within the observed debris flow track. The final distribution of the

debris flow deposition is also presented (Fig. 6b). Most deposition is
simulated to occur after Ch 500, which corresponds well to the judg-
ment from the field investigations that the main deposition area is lo-
cated downstream Ch 500. The runout distance is slightly shorter than
the observed value. Some deposition zone falls outside the observed
range, but most of the deposition area matches well with the observed
range.

The simulation results from the three entrainment models and the
debris flow records are summarised in Table 5. Generally, all of the
three models perform acceptably well. The erosion and deposition vo-
lumes simulated by the Iverson-Ouyang and Linear-MC models are
slightly less than the observed values, while the Linear-Ex model
slightly overestimates the volumes. The maximum erosion and de-
position depths simulated by the models are close to the records. The
maximum flow velocity is estimated empirically to be 16.5 m/s at Ch
350 and 12.5 m/s at Ch 475.

For the Linear-Ex entrainment model, the final erosion distribution
is shown in Fig. 6c. The most eroded area is simulated to be located
between Ch 100 and Ch 500, but is more widespread compared with the
Iverson-Ouyang model result. The simulated erosion area generally falls
on the observed debris flow track. The final distribution of the debris
flow deposition depth is presented in Fig. 6d. The simulation result
corresponds well to the field observation: the downstream area after Ch
500 is the main deposition area. The runout distance is also very close
to the observed value. Only a small part of the deposition zone falls
outside the observed range.

Using the Linear-MC entrainment model, the calculated final ero-
sion distribution is shown in Fig. 6e. The most eroded area is located
between Ch 100 and Ch 300 that is most concentrated among the three
cases. The simulated debris flow area generally falls within the ob-
served debris flow track. As presented in Fig. 6f, the final distribution of
the debris flow deposition zone is very similar to that from the Linear-
Ex model. Most of the simulated erosion and deposition was inside the

Table 4
Parameters for three entrainment models.

Iverson-Ouyang Linear-Ex Linear-MC

Threshold velocity (m/s) Pore pressure ratio Coefficient of erodibility (mm3/N-s) Critical erosive shear stress (Pa) Erodibility coefficient (mm3/N-s)

Vthreshold λ Ke τc Kmc

3.0 0.55 50 5.0 250

Fig. 5. Comparison of grain size distributions of two samples of the debris flow deposits in Sosio et al. (2007) and the envelopes for the Tsing Shan debris flow deposit
in King (2013). Sample particle diameter < 20 mm.
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Fig. 6. Distributions of final erosion depth and deposition depth at the end of simulation: (a) and (b) Iverson-Ouyang model; (c) and (d) Linear-Ex model; (e) and (f)
Linear-MC model.
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debris flow covered area. However, a small part of the simulated ero-
sion and deposition zone is outside the flow covered area. This may be
because the elevation model was obtained after the debris flow event
and the spatial uncertainties in the model parameters were not con-
sidered.

A comparison between the simulated and observed entrainment and
deposition volumes along the debris flow track is shown in Fig. 7a and
b, respectively. The field observation illustrates that erosion is

somewhat uniformly distributed along the flow path. In the Iverson-
Ouyang model case, erosion is concentrated before Ch 500. While in
both the linear models, erosion is more scattered. By comparing the
observed and simulated deposition distributions along the track, it can
be concluded that all of the three simulations give acceptable results,
with significant deposition occurring between Ch 500 to Ch 835.

Fig. 8 presents the discharge process and the evolution of volumetric
sediment concentration, Cv, at Ch 500. The timeline starts after the
initiation of debris flow (1 h/3600 s). In the Iverson-Ouyang model, the
debris flow lasts for about 40 s, with a peak discharge of about
1800 m3/s. In the Linear-Ex and Linear-MC models, the discharge
process is longer and the peak discharge is around 190 m3/s, which is
more realistic than that from the Iverson-Ouyang model. When the
debris flow front reaches Ch 500, Cv increases very quickly to a peak
value of about 0.5. In the Iverson-Ouyang model, Cv drops more quickly
than that in the Linear models, as a result of very fast marching of the
debris flow. For the two Linear models, Cv decreases gradually to a
lower level, which can be viewed as a hyper-concentrated flow induced
by further erosion behind the debris flow front. In the Linear-Ex model,

Table 5
Summary of real debris flow data and simulation results.

Results Observed
value

Iverson-
Ouyang

Linear-Ex Linear-MC

Erosion volume (m3) 14,630 16,019 21,000 11,200
Deposition volume (m3) 20,400 18,900 25,800 18,000
Max erosion depth (m) ~3 3.4 2.0 3.6
Max deposition depth

(m)
~3 2.6 3.6 3.8

Max velocity (m/s) 12.5–16.5 12.0 11.0 9.0

Fig. 7. Variation of (a) material entrainment and (b) deposition volume along the flow distance.
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high values of sediment concentration are maintained for a very long
time; however, the Linear-MC model predicts a flowing process of only
about half an hour.

5. Discussion

Entrainment is a very important mechanism in debris flow dy-
namics. Many entrainment models have been proposed to study this
phenomenon. In this study, the Iverson-Ouyang model and the Linear-
MC model give a relatively concentrated entrainment area in steep
slope parts (Fig. 6a and e) where high debris flow velocity and dis-
charge rate occur and induce large shear stresses on the bed surface. In
flat areas downstream Ch 500, entrainment is not simulated by the two
models. The critical shear stress in the two models is computed by the
Mohr-Coulomb failure criterion with a magnitude of kPa. Entrainment
occurs only when the shear stress acting on the bed soil by the debris
flow mass exceeds the shear resistance of the bed soil. In flat areas the
velocity and discharge of the debris flow are much smaller than those in
the steep slopes. Thus no entrainment is simulated by the two models.
For the Linear-Ex model, the critical shear stress is obtained from field
experiments (e.g. a jet index method). The resulting value of the critical
shear stress is of magnitudes of several to dozens Pa (Zhu and Zhang,
2016; Shen et al., 2017). The threshold of entrainment occurrence is
much lower than that in the two other models, which results in an
extensive entrainment area covering both the upper steep part and the
lower deposition part (Fig. 6c).

The Iverson-Ouyang model produces a much larger but ephemeral
entrainment rate. Erosion occurs very fast and intensively. A large vo-
lume of solid materials enters the flowing mixture, resulting in a high
discharge rate compared with the other models (Fig. 8a). The resulting
higher mobility is closely associated with the larger entrainment rate in
the mass flow. This has been shown with a mechanical erosion model

for two-phase particle fluid mixture debris flows by Pudasaini and
Fischer (2016). They proved that reduced friction in erosion is
equivalent to momentum production and erosion enhances the mass
flow mobility. Furthermore, they stated that “As the mass is added into
the system, the gravity load immediately accelerates the total mass
down the entire travel distance. This further enhances the flow mobi-
lity, because the erosion-induced added mass implies added potential
energy.” The resulting debris flow surge marches rapidly, followed by a
clear water flow that does not induce entrainment due to the large
critical shear stress (Fig. 8c).

On the other hand, the Linear-Ex model produces a mild but pro-
longed entrainment process. The final erosion depth is smaller than that
in the Iverson-Ouyang model; however, the eroded area covers the
whole debris flow track including the deposit area (Figs. 6c and 7a).
This is due to the empirical entrainment equation and parameters that
give a low threshold for entrainment so that entrainment can occur
even in the flat area. Moreover, as reported by King (2013), the flooding
in the late part of the event was responsible for further gully erosion
and redistribution of the earlier flow deposits. The entrainment in the
late stage of the rainstorm is simulated by the Linear-Ex model. Hyper-
concentrated flow with solid concentration is generated following the
main debris flow surge (Fig. 8d) with a certain solid concentration for a
long period. This can also be explained by the low critical shear stress
used in the Liner-Ex model. The low threshold given by the model al-
lows entrainment by runoff water that continues to move bed solid mass
after the debris flow surge.

The Linear-MC model produces results somewhere between the
above two models. The entrainment equation is empirical but the Mohr-
Coulomb criterion is adopted to compute the critical shear stress. By
comparing the simulated entrainment patterns with the field observa-
tions, it is found that the Linear-Ex model simulated entrainment for
both the debris flow surge and the posterior rainfall runoff (Fig. 8d). In

Fig. 8. The discharge hydrograph of debris flow and changes in volumetric solid concentration (Cv) at Ch500 after the debris flow was initiated at t = 3600 s:
Iverson-Ouyang model with (a) discharge process and (b) sediment concentration changes; Linear-Ex and Linear-MC model with (c) discharge process and (d)
sediment concentration changes.
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general, all three models simulate the entrainment volume reasonably
well; however, instead of using a single-phase rheological model with
empirical parameters obtained from experiments, more mechanically-
based models might be further adopted for entrainment simulation
(Pudasaini and Fischer, 2016). The presented results (Table 5) with
respect to the three entrainment models substantially depend on some
parameter values that need to be calibrated by trial and error without
rigorous physical constrains, such as Kmc, λ, and vthreshold. The simula-
tion results are especially sensitive to λ and vthreshold in the Iverson-
Ouyang model, Kmc and Cs in the Linear-MC model, and Ke and τc in the
Linear-Ex model. One cannot easily justify which model is better over
the other. Similarly, since the debris flow material is usually composed
of solid particles and viscous fluid, better and more reliable results
could be obtained by using two-phase, or even multi-phase mass flow
models (e.g. Pudasaini, 2012; Li et al., 2018; Pudasaini and Mergili,
2019) and mechanical two-phase entrainment models (Pudasaini and
Fischer, 2016). Moreover, spatial variations and uncertainties in the
geotechnical, geomorphological and hydrogeological parameters (e.g.
Xiao et al., 2017; Fenton et al., 2018; Zhang et al., 2018), and the
mechanical and hydrological vegetation-soil interactions (Zhu and
Zhang, 2019) are not considered in this study. Spatial uncertainties
might also be considered in the future.

6. Summary and conclusions

A debris-flow modelling program, EDDA 2.0, is used to evaluate the
performance of three entrainment analysis models, including the
Iverson-Ouyang model and two linear models with different concepts of
erosion resistance using the well documented Tsing Shan debris flow
that occurred in Hong Kong in September 1990 as a benchmark. Most of
the simulation parameters can be determined from field and laboratory
test results with minor adjustments based on field conditions.

All the three entrainment models perform reasonably well, giving
satisfactory accuracy of the total entrainment magnitude, deposition
volume, inundation area and runout distance compared with the field
observations. In the Iverson-Ouyang model, the entrainment area is
concentrated in the upper part of the track with steep slope angles. The
runout distance is slightly shorter than the observed value. The dis-
charge duration given by this model is very short while the flow rate
very large. The Linear-Ex entrainment model provides satisfactory
performance in predicting the entrainment, deposition and discharge
processes, but predicts a much longer flow duration with high sediment
concentrations. The Linear-MC entrainment model leads to simulation
results similar to those from the Linear-Ex model, with a discharge
process of about half an hour. The results serve as a reference for se-
lecting models for hazard analysis and risk assessment.

Declaration of Competing Interest

None.

Acknowledgements

The authors appreciate the Civil Engineering and Development
Department of the HKSAR Government for offering access to the de-
tailed documents of the Tsing Shan debris flow. The financial support
from the Research Grants Council of Hong Kong (Grants Nos. 16206217
and UGC/FDS25/E11/17) is acknowledged.

References

FLO-2D Software Inc, 2009. FLO-2D User Manual, Version 2009. Nutrioso, Arizona.
van Asch, T.W.J., Tang, C., Alkema, D., Zhu, J., Zhou, W., 2014. An integrated model to

assess critical rainfall thresholds for run-out distances of debris flows. Nat. Hazards
70 (1), 299–311.

Berti, M., Genevois, R., Simoni, A., Tecca, P.R., 1999. Field observations of a debris flow

event in the Dolomites. Geomorphology 29 (3–4), 265–274.
Breien, H., De Blasio, F.V., Elverhøi, A., Høeg, K., 2008. Erosion and morphology of a

debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5 (3),
271–280.

Chan, Y.C., Lam, C.H., Shum, W.L., 1991. The September 90 Tsing Shan Landslide: A
Factual Report, Technical Note 4/91. Geotechnical Control Office, Hong Kong.

Chang, D.S., Zhang, L.M., Xu, Y., Huang, R.Q., 2011. Field testing of erodibility of two
landslide dams triggered by the 12 May Wenchuan earthquake. Landslides 8 (3),
321–332.

Chen, H.X., Zhang, L.M., 2015. EDDA 1.0: integrated simulation of debris flow erosion,
deposition and property changes. Geosci. Model Dev. 8, 829–844.

Chen, H.X., Zhang, L.M., Gao, L., Yuan, Q., Lu, T., Xiang, B., Zhuang, W.L., 2017.
Simulation of interactions among multiple debris flows. Landslides 14 (2), 595–615.

Dai, Z.L., Huang, Y., Cheng, H.L., Xu, Q., 2014. 3D numerical modelling using smoothed
particle hydrodynamics of flow-like landslide propagation triggered by the 2008
Wenchuan earthquake. Eng. Geol. 180, 21–33.

Fenton, G.A., Naghibi, F., Hicks, M.A., 2018. Effect of sampling plan and trend removal on
residual uncertainty. Georisk 12 (4), 253–264.

Gao, L., Zhang, L.M., Chen, H.X., Shen, P., 2016. Simulating debris flow mobility in urban
settings. Eng. Geol. 214, 67–78.

Geotechnical Control Office, 1982. Mid-Levels Study: Report on Geology, Hydrology and
Soil Properties. Geotechnical Control Office, Hong Kong.

Graf, W.H., 1984. Hydraulics of Sediment Transport. Water Resources Publications,
Colorado, pp. 513.

Hanson, G.J., Simon, A., 2001. Erodibility of cohesive streambeds in the loess area of the
midwestern USA. Hydrol. Process. 15 (1), 23–38.

Hungr, O., McDougall, S., 2009. Two numerical models for landslide dynamic analysis.
Comput. Geosci. 35 (5), 978–992.

Hungr, O., McDougall, S., Bovis, M., 2005. Entrainment of material by debris flows. In:
Jakob, M., Hungr, O. (Eds.), Debris-Flow Hazards and Related Phenomena. Springer,
Berlin, pp. 135–158.

Hutchinson, J.N., Bhandari, R.K., 1971. Undrained loading, a fundamental mechanism of
mudflows and other mass movements. Géotechnique 21 (4), 353–358.

Iverson, R.M., 2012. Elementary theory of bed-sediment entrainment by debris flows and
avalanches. J. Geophys. Res. 117 (F3).

Iverson, R.M., Ouyang, C.J., 2015. Entrainment of bed material by earth-surface mass
flows: Review and reformulation of depth-integrated theory. Rev. Geophys. 53 (1),
27–58.

Iverson, R.M., Reid, M.E., Logan, M., LaHusen, R.G., Godt, J.W., Griswold, J.P., 2011.
Positive feedback and momentum growth during debris-flow entrainment of wet bed
sediment. Nat. Geosci. 4, 116–121.

Jakob, M., Anderson, D., Fuller, T., Hungr, O., Ayotte, D., 2000. An unusually large debris
flow at Hummingbird Creek, Mara Lake, British Columbia. Can. Geotech. J. 37 (5),
1109–1125.

Johnson, A.M., Rodine, J.R., 1984. Debris flow. In: Brunsden, D., Prior, D.B. (Eds.), Slope
Instability. John Wiley & Sons, Chichester, UK, pp. 257–361.

Julian, J.P., Torres, R., 2006. Hydraulic erosion of cohesive riverbanks. Geomorphology
76 (1–2), 193–206.

King, J.P., 2013. Tsing Shan Debris Flow and Debris Flood. Geotechnical Engineering
Office, Civil Engineering and Development Department, Hong Kong. Online access.
https://www.cedd.gov.hk/eng/publications/geo/geo-reports/geo_rpt281/index.
html.

Kwan, J.S.H., Sun, H.W., 2007. Benchmarking exercise on landslide mobility modellin-
g–runout analyses using 3dDMM. In: Ho, K., Li, V. (Eds.), Proceedings of the 2007
International Forum on Landslide Disaster Management. Geotechnical Engineering
Office, Hong Kong, pp. 945–966.

Laigle, D., Coussot, P., 1997. Numerical modelling of mudflows. J. Hydraul. Eng. 123 (7),
617–623.

Lê, L., Pitman, E.B., 2009. A model for granular flows over an erodible surface. SIAM J.
Appl. Math. 70 (5), 1407–1427.

Li, D.H., Xu, X.N., Huao, H.B., 2012. Formation conditions and the movement char-
acteristics of “8.14” giant debris flow in Yingxiu Town, Wenchuan County, Sichuan
Province. Chinese J. Geol. Hazard Control 23 (3), 32–38.

Li, J., Cao, Z.X., Hu, K.H., Pender, G., Liu, Q.Q., 2018. A depth-averaged two-phase model
for debris flows over erodible beds. Earth Surf. Process. Landf. 43 (4), 817–839.

Li, P., Shen, W., Hou, X.K., Li, T.L., 2019. Numerical simulation of the propagation
process of a rapid flow-like landslide considering bed entrainment: a case study. Eng.
Geol. 263. https://doi.org/10.1016/j.enggeo.2019.105287.

McDougall, S., Hungr, O., 2005. Dynamic modelling of entrainment in rapid landslides.
Can. Geotech. J. 42 (5), 1437–1448.

Medina, V., Hürlimann, M., Bateman, A., 2008. Application of FLATModel, a 2D finite
volume code, to debris flows in the northeastern part of the Iberian Peninsula.
Landslides 5 (1), 127–142.

Mergili, M., Jan-Thomas, F., Krenn, J., Pudasaini, S.P., 2017. r.avaflow v1, an advanced
open-source computational framework for the propagation and interaction of two-
phase mass flows. Geosci. Model Dev. 10 (2), 553–569.

Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J.T., Huggel, C., Pudasaini,
S.P., 2018a. How well can we simulate complex hydro-geomorphic process chains?
The 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú).
Earth Surf. Process. Landf. 43 (7), 1373–1389.

Mergili, M., Frank, B., Fischer, J.T., Huggel, C., Pudasaini, S.P., 2018b. Computational
experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with
r.avaflow: Lessons learned for predictive mass flow simulations. Geomorphology 322,
15–28.

O’Brien, J.S., Julien, P.Y., 1988. Laboratory analysis of mudflow properties. J. Hydraul.
Eng. 114 (8), 877–887.

P. Shen, et al. Engineering Geology 270 (2020) 105581

11

http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0005
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0010
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0010
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0010
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0015
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0015
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0020
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0020
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0020
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0025
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0025
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0030
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0030
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0030
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0035
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0035
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0040
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0040
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0045
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0045
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0045
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0050
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0050
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0055
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0055
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0060
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0060
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0065
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0065
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0070
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0070
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0075
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0075
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0080
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0080
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0080
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0085
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0085
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0090
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0090
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0095
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0095
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0095
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0100
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0100
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0100
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0105
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0105
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0105
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0110
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0110
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0115
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0115
https://www.cedd.gov.hk/eng/publications/geo/geo-reports/geo_rpt281/index.html
https://www.cedd.gov.hk/eng/publications/geo/geo-reports/geo_rpt281/index.html
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0125
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0125
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0125
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0125
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0130
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0130
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0135
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0135
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0140
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0140
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0140
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0145
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0145
https://doi.org/10.1016/j.enggeo.2019.105287
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0155
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0155
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0160
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0160
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0160
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0165
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0165
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0165
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0170
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0170
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0170
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0170
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0175
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0175
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0175
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0175
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0180
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0180


O’Brien, J.S., Julien, P.Y., Fullerton, W.T., 1993. Two-dimensional water flood and
mudflow simulation. J. Hydraul. Eng. 119 (2), 244–261.

Ouyang, C.J., He, S.M., Tang, C., 2015. Numerical analysis of dynamics of debris flow
over erodible beds in Wenchuan earthquake-induced area. Eng. Geol. 194, 62–72.

Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., Drempetic, V., 2009. A depth-integrated,
coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer.
Anal. Methods Geomech. 33 (2), 143–172.

Pudasaini, S.P., 2012. A general two-phase debris flow model. J Geophys. Res.-Earth 117
(F03010).

Pudasaini, S.P., Fischer, J.T., 2016. A mechanical erosion model for two-phase mass
flows. arXiv:1610.01806.

Pudasaini, S.P., Krautblatter, M., 2014. A two-phase mechanical model for rock-ice
avalanches. J Geophys. Res.-Earth 119 (10), 2272–2290.

Pudasaini, S.P., Mergili, M., 2019. A multi-phase mass flow model. J Geophys. Res.-Earth
124 (12), 2920–2942.

Quan Luna, B., Remaître, A., van Asch, T.W.J., Malet, J.P., van Westen, C.J., 2012.
Analysis of debris flow behaviour with a one dimensional run-out model in-
corporating entrainment. Eng. Geol. 128, 63–75.

Ren, Z., Wang, K., Yang, K., Zhou, Z.H., Tang, Y.J., Tian, L., Xu, Z.M., 2018. The grain size
distribution and composition of the Touzhai rock avalanche deposit in Yunnan,
China. Eng. Geol. 234, 97–111.

Sassa, K., Wang, G.H., 2005. Mechanism of landslide-triggered debris flows: liquefaction
phenomena due to the undrained loading of torrent deposits. In: Jakob, M., Hungr, O.
(Eds.), Debris-Flow Hazards and Related Phenomena. Springer, Berlin, pp. 81–104.

Shen, P., Zhang, L.M., Chen, H.X., Gao, L., 2017. Role of vegetation restoration in miti-
gating hillslope erosion and debris flows. Eng. Geol. 216, 122–133.

Shen, P., Zhang, L.M., Chen, H.X., Fan, R.L., 2018. EDDA 2.0: integrated simulation of
debris flow initiation and dynamics considering two initiation mechanisms. Geosci.

Model Dev. 11, 2841–2856.
Sosio, R., Crosta, G.B., Frattini, P., 2007. Field observations, rheological testing and nu-

merical modelling of a debris-flow event. Earth Surf. Process. Landf. 32 (2), 290–306.
Takahashi, T., Nakagawa, H., Harada, T., Yamashiki, Y., 1992. Routing debris flows with

particle segregation. J. Hydraul. Eng. 118 (11), 1490–1507.
Wang, G., Sassa, K., Fukuoka, H., 2003. Downslope volume enlargement of a debris sli-

de–debris flow in the 1999 Hiroshima, Japan, rainstorm. Eng. Geol. 69 (3–4),
309–330.

Wang, T., Chen, X.Q., Li, K., Chen, J.G., You, Y., 2018. Experimental study of viscous
debris flow characteristics in drainage channel with oblique symmetrical sills. Eng.
Geol. 233, 55–62.

Xiao, T., Li, D.Q., Cao, Z.J., Tang, X.S., 2017. Full probabilistic design of slopes in spa-
tially variable soils using simplified reliability analysis method. Georisk 11 (1),
146–159.

Yang, H.Q., Xing, S.G., Wang, Q., Li, Z., 2018. Model test on the entrainment phenomenon
and energy conversion mechanism of flow-like landslides. Eng. Geol. 239, 119–125.

Zhang, L.L., Wu, F., Zheng, Y.F., Chen, L.H., Zhang, J., Li, X., 2018. Probabilistic cali-
bration of a coupled hydro-mechanical slope stability model with integration of
multiple observations. Georisk 12 (3), 169–182.

Zhang, L.M., Xiao, T., He, J., Chen, C., 2019. Erosion-based analysis of breaching of Baige
landslide dams on the Jinsha River, China, in 2018. Landslides 16, 1965–1979.

Zhou, S.Y., Gao, L., Zhang, L.M., 2019. Predicting debris-flow clusters under extreme
rainstorms: a case study on Hong Kong Island. B. Eng. Geol. Env. 78, 5775–5794.

Zhu, H., Zhang, L.M., 2016. Field investigation of erosion resistance of common grass
species for soil bioengineering in Hong Kong. Acta Geotech. 11 (5), 1047–1059.

Zhu, H., Zhang, L.M., 2019. Root-soil-water hydrological interaction and its impact on
slope stability. Georisk 13 (4), 349–359.

P. Shen, et al. Engineering Geology 270 (2020) 105581

12

http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0185
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0185
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0190
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0190
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0195
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0195
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0195
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0200
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0200
https://arxiv.org/abs/1610.01806
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0210
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0210
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0215
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0215
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0220
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0220
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0220
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0225
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0225
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0225
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0230
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0230
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0230
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0235
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0235
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0240
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0240
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0240
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0245
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0245
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0250
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0250
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0255
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0255
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0255
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0260
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0260
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0260
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0265
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0265
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0265
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0270
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0270
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0275
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0275
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0275
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0280
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0280
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0285
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0285
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0290
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0290
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0295
http://refhub.elsevier.com/S0013-7952(19)31717-X/rf0295

	Debris flow enlargement from entrainment: A case study for comparison of three entrainment models
	Recommended Citation
	Authors

	ERG7

