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NANO EXPRESS Open Access

Synthesis of Sea Urchin-Like NiCo2O4 via
Charge-Driven Self-Assembly Strategy for
High-Performance Lithium-Ion Batteries
Bin Wang2, Chi-Wing Tsang1, Ka Ho Li1, Yuanyuan Tang3, Yanping Mao4 and Xiao-Ying Lu1*

Abstract

In this study, hydrothermal synthesis of sea urchin-like NiCo2O4 was successfully demonstrated by a versatile
charge-driven self-assembly strategy using positively charged poly(diallydimethylammonium chloride) (PDDA)
molecules. Physical characterizations implied that sea urchin-like microspheres of ~ 2.5 μm in size were formed by
self-assembly of numerous nanoneedles with a typical dimension of ~ 100 nm in diameter. Electrochemical
performance study confirmed that sea urchin-like NiCo2O4 exhibited high reversible capacity of 663 mAh g−1 after
100 cycles at current density of 100 mA g−1. Rate capability indicated that average capacities of 1085, 1048, 926,
642, 261, and 86 mAh g−1 could be achieved at 100, 200, 500, 1000, 2000, and 3000 mA g−1, respectively. The
excellent electrochemical performances were ascribed to the unique micro/nanostructure of sea urchin-like
NiCo2O4, tailored by positively charged PDDA molecules. The proposed strategy has great potentials in the
development of binary transition metal oxides with micro/nanostructures for electrochemical energy storage
applications.

Keywords: Hydrothermal synthesis, NiCo2O4, Self-assembly, Lithium-ion batteries

Introduction
Spinel nickel cobaltite (NiCo2O4) is one of the most im-
portant binary transition metal oxides (TMOs) with wide
applications in electro-catalytic water splitting, supercapaci-
tors and rechargeable battery materials, etc. [1–7]. Particu-
larly, spinel NiCo2O4, having a theoretical specific capacity
(890 mAh g−1), can be used as promising high-capacity
anode materials for electrochemical lithium storage, owing
to the higher electrical conductivity and electrochemical ac-
tivities than monometallic oxides (Co3O4 and NiO) [8, 9].
However, lithium storage performance of NiCo2O4 was
highly dependent on the distinct structure and morphology,
which showed significant effects on cycling stability and
rate capability.
In recent years, various NiCo2O4 with interesting

morphologies, including nanowires [10], nanosheets [11],
nanoflakes [12], nanobelts [12], sea urchin-like [13], and
flower-like structures [14], have been synthesized by

hydrothermal and solvothermal method. Previous studies
suggested that micro/nanostructures manifested dual ben-
efits from microscale and nanoscale dimensions for im-
proved electron and ion transport, thereby leading to
superior electrochemical performances [15, 16]. Generally,
structure design of NiCo2O4 with micro/nanostructures
was directed by choosing appropriate morphology con-
trolling reagents. Zhang et al. employed polyvinylpyrroli-
done (PVP) to synthesize NiCo2O4 for controlling
morphology, based on coordination of metal ions with
functional groups (e.g., -N and/or C=O) of pyrrolidone
[17]. However, limited effective structure directing re-
agents are feasible for synthesis of binary TMOs with
unique morphology. Thus, it is highly desirable to explore
versatile reagents for synthesizing NiCo2O4 with micro/
nanostructures. Recently, we reported positively charged
reagents, such as diallyldimethylammonium chloride
(DDA) and its homopolymer, exhibited potentials in syn-
thesizing Co3O4 for lithium-ion batteries (LIBs) [15, 16].
However, we are not aware of any binary TMOs (e.g.,
NiCo2O4) with micro/nanostructures synthesized by such
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charged molecules for electrochemical lithium storage
applications.
Herein, we reported charge-driven self-assembly strat-

egy for NiCo2O4 with sea urchin-like structure, followed
by thermal treatment. The positively charged poly(dially-
dimethylammonium chloride) (PDDA) molecules were
considered as a crucial structure directing reagent in
hydrothermal synthesis. Sea urchin-like NiCo2O4 with
micro/nanostructures also demonstrated superior lith-
ium storage performance in repeated charge-discharge
cycles. Obviously, it is the first work on charge-driven
self-assembly synthesis of binary TMOs with assistance
of charged organic molecules. This novel strategy is ex-
pected to pave a new way of synthesizing binary TMOs
with novel micro/nanostructures for energy storage
materials.

Methods
Synthesis of Sea Urchin-Like NiCo2O4

In a typical synthesis, 0.5 g of nickel acetate tetrahydrate
(≥ 99%), 1.0 g of cobalt acetate tetrahydrate (≥ 98%), and
3.0 g of urea (99.5%) received from Acros Organics were
dissolved in 55 mL deionized water, followed by adding
5 g PDDA solution (20 wt.% in H2O, Sigma-Aldrich).
The mixed solution was carefully transferred into a
sealed Teflon-lined stainless steel autoclave and placed
in an electric oven maintained at 120 °C for 2 h. The
resulting precipitation was collected by vacuum-assisted
filtration and washed with deionized water for three
times. Finally, the filtered sample was thermal treated in
a muffle furnace at 450 °C for 2 h. The as-synthesized
black samples were directly used in material character-
izations and electrochemical performance evaluation.

Material Characterizations and Electrochemical
Performance Evaluation
Crystal phases, material morphologies, microstructures,
and valence states of the as-prepared samples were charac-
terized by powder X-ray diffractometer (XRD, Philips
PW1830), field emission scanning electron microscope
(FE-SEM, Hitachi S4800), transmission electron microscope
(TEM, FEI Tecnai G2 20 scanning), and X-ray photoelec-
tron spectroscopy (XPS, Model PHI5600), respectively.
Thermal conversion study of precursors was conducted on
thermogravimetric analysis (TGA, Mettler Toledo) and dif-
ferential scanning calorimetry (DSC, Mettler Toledo) under
oxygen atmosphere. In addition, specific surface area and
pore size distributions of NiCo2O4 were performed on a
surface area analyzer (Quantachrome Instruments) by N2

adsorption-desorption isotherms at 77 K. The specific
surface area and pore size distribution were obtained
by multi-point Brunauer–Emmett–Teller (BET) and
Barrett–Joyner–Halenda (BJH) method, respectively.
Electrochemical lithium storage performance and rate

capability were evaluated in CR2025 coin-type cell
with NiCo2O4 as working electrode, lithium metal as
counter electrode, microporous membrane (Celgard®
2400) as separator, and 1 M LiPF6 in 50 vol.% ethyl-
ene carbonate and 50 vol.% dimethyl carbonate as
electrolyte. The working electrode was composed of
80% active NiCo2O4 materials, 10% PVdF binder, and
10% SuperP conductive carbon. Cyclic voltammetry
(CV) analysis was measured in the voltage range of
0.005–3 V vs. Li+/Li and electrochemical impedance
spectra (EIS) of sea urchin-like NiCo2O4 anodes were also
recorded on electrochemical station (CorrTest® Instruments)
in the frequency range of 100 kHz to 0.01 Hz with an ampli-
tude of 5 mV. Galvanostatic charge-discharge test was con-
ducted on a battery testing system (LAND CT2001A) at
room temperature. The cycling performance was conducted
at a current density of 100 mA g−1 for 100 cycles and rate
capability test was performed with various current densities
ranging from 100 mA g−1 to 3000 mA g−1.

Results and Discussion
XRD pattern in Fig. 1a suggested that the as-prepared
product was face-centered-cubic NiCo2O4 of high

Fig. 1 a XRD patterns of the as-prepared precursor and NiCo2O4

product before and after heat treatment at 450 °C. b TGA analysis of
precursor under oxygen atmosphere with a heating rate
of 10 °C min−1
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crystallinity and purity (PDF 02-1074). The 2θ peaks lo-
cated at 31.1°, 36.6°, 44.6°, 55.3°, 59.0°, 64.7° were
assigned to characteristic crystal planes (2 2 0), (3 1 1),
(4 0 0), (4 2 2), (5 1 1), and (4 4 0), respectively. More-
over, crystal phases in the as-prepared precursors were
consisted of Ni2CO3(OH)2 (PDF 35-0501), and
Co(CO3)0.5(OH)·0.11H2O (PDF 48-0083), consistent
with previous study [18]. The 2θ peaks at 12.1°, 24.3°,
30.5°, 34.8°, and 59.8° could be related to Ni2CO3(OH)2
crystal plane (1 1 0), (1 3 0), (− 1 0 1), (− 2 0 1), and (0 0 2)
respectively. The 2θ peaks at 17.5°, 33.8°, 39.5°, and 47.3°
could be attributed to Co(CO3)0.5(OH)·0.11H2O crystal
plane (0 2 0), (2 2 1), (2 3 1), and (3 4 0), respectively.
Apparently, both Ni2+ and Co2+ were precipitated by
CO3

2− and OH− ions, released from the decomposition of
urea at hydrothermal conditions [16]. TGA curve in Fig.
1b displayed that calcination temperature of 450 °C was
enough for thermal conversion of the mixed phases to
pure NiCo2O4, since no mass loss was observed after
450 °C. Also, the conversion temperature was determined
to be 350 °C, leading to a total mass loss of 37 wt %.
Morphological analysis in Fig. 2a, b implied that sea

urchin-like structure of precursors was successfully ob-
tained with PDDA-assisted hydrothermal treatment. After
thermal treatment at 450 °C, sea urchin-like morphology

of NiCo2O4 microspheres could still be maintained, indi-
cating the robust nature at high temperature. The
NiCo2O4 microspheres were typically ~ 2.5 μm in diam-
eter, composed of numerous nanoneedles with an average
diameter of ~ 100 nm. Note that PDDA molecules play a
pivotal role in the formation of sea urchin-like structure.
At the beginning, the decomposition of urea leading to
generation of CO3

2− and OH− initiated the nucleation of
Co2+ and Ni2+ at hydrothermal conditions. The nitrogen
atoms in PDDA endowed with lone electron pairs enabled
strong electrostatic interaction with negative ions. There-
fore, the surface of these small nuclei was first occupied
by these negative ions (CO3

2− and OH−), leading to elec-
trostatic adsorption of positively molecules. Owing to
steric hindrance, PDDA led to the crystal growth of pre-
cursors along a preferential direction. In order to
minimize surface energy, self-assembly of nanostructures
via a spontaneous Ostwald ripening process eventually
occur, resulting in the formation of sea-urchin like
structure.
The effects of PDDA amounts on the morphology of

precursors were also investigated with FE-SEM
characterization. As shown in Fig. 3, when PDDA solu-
tion of 2.5 g was added in the hydrothermal synthesis,
the as-prepared precursor sample exhibited the same
spherical structure of 2~5 um in diameter. Many nano-
needles, considered as the building units, were randomly
organized into the large micro/nanostructured spheres.
When PDDA amount was further increased to 10 g,
both sea urchin-like and straw-sheaf-like structures
could be obviously found in the hydrothermal precur-
sors. The effects of PDDA on crystal orientation should
be associated with the surface charge property of small
nuclei, which could be tailored by the amounts of posi-
tively charged PDDA molecules. Thus, PDDA solution
of 5 g, which was equivalent to a concentration of
16.7 mg L−1, was the optimal conditions for synthesizing
sea urchin-like structure, owing to the preferential crys-
tal growth orientation.
The microstructures of microspheres analyzed by

TEM revealed that highly porous structures in NiCo2O4

was indicated by the evident white/black contrast and
high crystallinity was convinced by the clear lattice
planes (Fig. 4a, b). The average size of primary particles
was about 10 nm. The d-spacing values of ~ 0.20 nm
and ~ 0.25 nm were ascribed to crystal plane (400) and
(311), respectively. In addition, the pore size was about
10 nm on average. The above analysis confirmed that
sea urchin-like NiCo2O4 were successfully synthesized
by charge-driven self-assembly strategy with subsequent
thermal treatment.
Based on N2 adsorption-desorption isotherm, BET-specific

surface area and BJH pore size distribution of NiCo2O4 sam-
ple were about 68.6 m2 g−1 and 8.8 nm, respectively (Fig. 5).

Fig. 2 a, b Typical FE-SEM images of the sea urchin-like precursor
and NiCo2O4 synthesized with 5 g PDDA solution
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The high surface area and uniform pore size were favorable
for shortening ion diffusion length and alleviating volume ex-
pansion in electrochemical processes. The survey spectrum
in Fig. 6a depicted the presence of Ni, Co, O, and C in the
product. The high-resolution XPS data of Co2p in Fig. 6b in-
dicated that co-existence of Co2+ and Co3+ species, as re-
vealed by the fitting Co2p3/2 peaks located at ~ 779.5 eV and
~ 781.3 eV, respectively. Similarly, high-resolution XPS data
of Ni 2p in Fig. 6c implied the presence of Ni2+ and Ni3+, as
suggested by the fitting Ni2p3/2 peaks centered at about ~
854.6 eV and ~ 856.2 eV, respectively. The presence of satel-
lite peaks also confirmed the presence of Co2+ and Ni2+.
Note that the peak separations for Co2p1/2 vs Co2p3/2 and
Ni2p1/2 vs Ni2p3/2 were determined to be 15.2 and 17.3 eV,
consistent with previous studies [16, 19]. Multiple valence
states of Co (+ 2, + 3) and Ni (+ 2, + 3) in spinel NiCo2O4

were beneficial for electrochemical conversion reactions in
charging-discharging processes.
The electrochemical conversion mechanism and re-

versibility of sea urchin-like NiCo2O4 was investigated
with CV analysis. As shown in Fig. 7, in the first cycle,
two distinct cathodic peaks located at about 0.8 V and
1.3 V indicated the electrochemical reduction of Co3+ to
Co2+, and then reduction of Co2+ and Ni2+ to metallic
Co and Ni species, respectively [20]. For the first anodic
process, electrochemical oxidation of metallic Co and Ni
at about 1.4 and 2.2 V would lead to the reversible gen-
eration of Co2+, Co3+, and Ni2+ species, which eventually
resulted in the formation of NiCo2O4 phase. It is also
possible that solid electrolyte interphase was formed in
the first activation cycle. Obviously, after the activation
process in the first cycle, good reversibility of

Fig. 3 Typical FE-SEM images of the as-prepared precursor synthesized with different amounts of PDDA solution a, b 2.5 g; c, d 10 g

Fig. 4 a, b TEM images of the sea urchin-like NiCo2O4 synthesized
with 5 g PDDA solution
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electrochemical redox reactions could be observed in
the subsequent two cycles, as indicated by the over-
lapped CV curves. The only difference was that the
major reduction peak was shifted from 0.8 to 1.0 V, con-
sistent with previous CV study on NiCo2O4 anodes [8].
The detailed mechanism of electrochemical conversion

reactions was also discussed in previous studies and
could be described as below [20].

NiCo2O4 þ 8 Liþ þ 8 e‐↔2 CoþNiþ 4 Li2O ð1Þ
Niþ Li2O↔NiOþ 2 Liþ þ 2 e‐ ð2Þ
Coþ Li2O↔CoOþ 2 Liþ þ 2 e‐ ð3Þ

CoOþ 1=3 Li2O↔1=3 Co3O4 þ 2=3 Liþ þ 2=3 e‐

ð4Þ
Electrochemical cycling performance of NiCo2O4 sample

was provided in Fig. 8a and the result indicated that a re-
versible capacity of 663 mAh g−1 was achieved at a current
density of 100 mA g−1 after 100 charge-discharge cycles.
The cycling performance was also comparable with previ-
ous study on pure NiCo2O4 material. For example, electro-
chemical lithium storage of hierarchical NiCo2O4 nanowire
array was about 413 mAh g−1 when evaluated at 100 mA g−1

over 100 cycles [5]. However, when NiCo2O4 was modified
with highly conductive additives or metal oxides, better
electrochemical performance could be achieved in com-
parison with pristine NiCo2O4. For instance, Chen et al. re-
ported cycling stability of pure NiCoO2 was significantly
improved by reduced graphene oxide and a high reversible
capacity of 816 mAh g−1 was achieved with 80.1% capacity
retention [21]. Also, Sun et al. reported the cycling per-
formance of porous NiCoO2/NiO hollow dedecahedron
was about 1535 mAh g−1 at 200 mA g−1 over 100 cycles,
equivalent to a capacity retention of 97.2% [22]. The
Coulombic efficiencies after the initial activation were al-
most stabilized at ~ 100%, indicative of high electrochem-
ical reversibility. As shown in Fig. 8b, the charge-discharge
curves at different cycles also showed distinctive behaviors.
With repeated charge-discharge cycles, it is obvious that
charge-discharge curves of the 50th cycle were also identi-
cal with the initial cycles, indicating similar electrochemical
reaction pathways in the first 50 cycles. However, the

Fig. 5 a Nitrogen adsorption and desorption isotherms and b pore
size distribution of sea urchin-like NiCo2O4 synthesized with 5 g
PDDA solution

Fig. 6 a Survey spectrum of sea urchin-like NiCo2O4. b, c High-resolution XPS spectra of Co2p and Ni2p
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charge-discharge curves of the 100th cycle showed slightly
different behaviors, suggesting that slow material decay
might be present during the anodic conversion reactions.
Moreover, rate capability in Fig. 8c showed that the average
discharge capacities of NiCo2O4 measured at current dens-
ities 100, 200, 500, 1000, 2000, and 3000 mA g−1 were
about 1085, 1048, 926, 642, 261, and 86 mAh g−1, respect-
ively. When current density was switched to 100 mA g−1,

high reversible capacity of about 1000 mAh g−1 was still
maintained, indicating no obvious decay of reversible cap-
acity in rate capability test. Note that the experimental spe-
cific capacity of 1085 mAh g−1 achieved at 100 mA g−1 was
higher than theoretical value (890 mAh g−1). This
phenomenon was commonly observed in transition metal
oxide anodes. The extra capacity might be ascribed to re-
versible formation of gel-like polymer films and interfacial
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Fig. 7 Cyclic voltammetry (CV) analysis of sea urchin-like NiCo2O4 anodes in the voltage range of 0.005–3.0 V with a scanning rate of 0.01 mV s−1

Fig. 8 a Cycling performance of NiCo2O4 tested at a current density of 100 mA g−1. b Typical charge-discharge curves of NiCo2O4 tested at
100 mA g−1 for the 1st, 10th, 50th, and 100th cycle c rate capability performance. d Typical charge-discharge curves of NiCo2O4 tested at
different current densities ranging from 100 to 3000 mA g−1
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lithium storage, etc. [23, 24]. In Fig. 8d, the typical
charge-discharge curves at different current densities also
suggested the specific capacity showed significant decrease
with the increasing of charge-discharge current densities
from 100 to 3000 mA g−1. The electrochemical perform-
ance achieved in this study was better or comparable with
previous studies on NiCo2O4-based materials. For instance,
Chen et al. reported mesoporous NiCo2O4 nanowires deliv-
ered reversible capacities of 1215, 797, and 413 mAh g−1 at
current densities of 200, 500, and 1000 mA g−1, re-
spectively [5]. The achieved rate capability of NiCo2O4

in this study was also comparable with previous work
on other transition metal oxides. For example, Lyu et
al. reported that reversible capacities of hollow CuO at
evaluated current densities of 100, 200, 500, and
1000 mA g−1 were 629, 567, 488, and 421 mAh g−1, re-
spectively [25]. It should be mentioned that the rate
performance of sea urchin-like NiCo2O4 was not stable,
particularly at high current densities. This phenomenon
was probably due to semiconducting nature of pristine
NiCoO2 and destruction of building units (nanonee-
dles) by high current density. Similarly, the C-rate per-
formances of spherical NiCo2O4 and NiCo2O4

nanoribbons were also unstable in previous studies,
when charge-discharge current density was changed to
≥ 1000 mA g−1 [20, 26].
Note that fluctuation of coulombic efficiency was

also observed in the C-rate measurement, particularly
at the changing points of current densities. For in-
stance, when the current density was switched from
1000 to 2000 mA g−1, coulombic efficiency of the
40th cycle was suddenly declined from 100 to about

80%. In the following 9 cycles, coulombic efficiency
was immediately stabilized at about 100%. The
sudden drop of coulombic efficiency might be related
to the partial loss of electrical connectivity between
NiCo2O4 materials and conductive network by volume
variation in the charging process, due to the applied
high current density. Similar phenomena were also re-
ported in previous C-rate studies on anode materials
for rechargeable batteries [27, 28].
To understand the nature of NiCo2O4 anodes, EIS

analysis was conducted in the frequency range of
100 kHz to 0.01 Hz with an amplitude of 5 mV. EIS was
widely employed as a useful tool to reveal electrochem-
ical behaviors and charge transfer process [29, 30]. For
NiCo2O4 anodes tested with different cycles, EIS spectra
in Fig. 9 revealed small semicircles and straight lines in
the high and low frequency regions, respectively. The
small semicircles should be related to charge transfer re-
sistance between electrode and electrolyte. The straight
lines indicated the Warburg impedance, which should
be associated with solid state diffusion of Li+ in NiCo2O4

electrodes [8]. The charge transfer resistances of fresh
NiCo2O4 electrode before and after 5 cycles were almost
identical, indicating no obvious change in electrode/elec-
trolyte interface. However, after 10 cycles, charge trans-
fer resistance became dominant in electrochemical
processes, as indicated by a larger diameter of semicircle.
In addition, the nearly parallel lines suggested the same
solid-state Li+ diffusion behaviors before and after cyc-
ling tests. Therefore, charge transfer resistance of
NiCo2O4 anodes could play a relatively important role in
the electrochemical performance.
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In this study, the improved performance of NiCo2O4

should be attributed to the micro/nanostructures of sea
urchin-like morphology, compared to previous work on
nanostructures (e.g., mesoporous nanowires). Basically, the
lithium storage performance was associated with efficient
transport of lithium ions and electrons in electrochemical
charge-discharge cycles. The numerous nanoneedle, viewed
as the building unit of sea urchin-like structure, could
greatly improve solid-state Li+ diffusion behaviors, due to
the shortened nanoscale length. In addition, the uniform
microspheres, regarded as the secondary particles of sea
urchin-like structure, could significantly enhance electron
transport behaviors, owing to long-range electron transport
network. The combined benefits of micro/nanostructures
in sea urchin-like structure could result in better electro-
chemical performance than nanostructures. Overall, the su-
perior electrochemical performance of NiCo2O4 was
ascribed to the unique physical properties of sea urchin-like
structure, which were tailored by PDDA-assisted charge-
driven self-assembly strategy. This proposed strategy has
potential in facile synthesis of energy storage materials for
next generation LIBs.

Conclusions
In conclusion, sea urchin-like NiCo2O4 were successfully
synthesized by charge-driven self-assembly strategy with
positively charged PDDA, followed by thermal treat-
ment. The charged molecules play a pivotal role in the
formation of sea urchin-like structure, due to electro-
static adsorption and steric hindrance. Also, sea
urchin-like NiCo2O4 demonstrated great potentials in
electrochemical lithium storage. The superior perform-
ance was ascribed to the unique sea urchin-like structure
of NiCo2O4 for enhanced electron and ion transport.
Overall, charge-driven self-assembly strategy is an ap-
pealing route to synthesize energy storage materials for
high-performance lithium-ion batteries.
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