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 Abstract 
The autodriver algorithm was introduced as a path-following algorithm for autonomous vehicles, which 

uses road geometry data and planar vehicle dynamics. In this paper, the autodriver algorithm is improved 

according to practical implications, and a more realistic vehicle model (roll mode) is used, which considers 

roll degree of freedom in addition to a planar motion. A Ghost-Car path-following approach is introduced 

to define the desired location of the car at every instance. Key steady-state characteristics of turning vehicles, 

namely the curvature, yaw rate, and side-slip responses, are discussed and used to construct a feed-forward 

component of a path-following controller based on the autodriver algorithm. Feedback control loops are 

designed and applied to minimise transient errors between the road and vehicle positions. Finally, 

simulations are performed to analyse the path-following performance of the proposed scheme. The results 

show promising performance of the controller both in terms of error minimisation and passenger comfort. 
   

Keywords— Autonomous Vehicle, Path-Following Control, Road Curvature, Vehicle Roll Dynamics 

 

LIST OF KEY SYMBOLS 

𝑣𝑥/𝑦  longitudinal/lateral velocity at centre of gravity 𝑆𝜅  curvature response 

𝛽  side-slip angle at centre of gravity 𝑆𝑟  yaw rate response 

𝑟  yaw velocity 𝑆𝛽  side-slip response 

𝜑  roll angle 𝐶𝛼𝑓/𝑟  front/rear axle’s cornering stiffness  

𝑝  roll rate (rolling velocity) 𝜌  radius of curvature 

𝐼𝑥/𝑧  roll/yaw moment of inertia 𝑅𝐴 
𝐵   

transformation matrix from A-frame to B-

frame 

𝛿  steer angle input 𝐫 
𝐴   position vector expressed in a-frame 

𝑎1/2  distance from front/rear axle     

 

 

1) INTRODUCTION 

The autonomous vehicle is a fashionable topic and has been a significant focus of research in recent years 

[1]. The autopilot system is now categorised in different levels of autodriving which can make semi to fully 

self-drive the vehicle by a set of developed theory. Companies around the world work hard on the software 

and hardware that aim to control the vehicle in a smarter way. An ultimate smart system is to use the lateral 

controller for designing dynamic path tracking as a critical component of the control system.  This top smart 

system can guide a vehicle with no human control or can assistant humans to control the vehicle when 

driving. Many countries use autonomous transportation well. The application of autonomous vehicles using 

self-drive systems is capable of being applied to cargo, naval steering, military, aircraft and even spacecraft. 

Autopilot functions can reduce human faults and errors, reducing driving stress. In this article, a full study 

of the autodriver algorithms on ground vehicles emerge and pursues improvements in the area of vehicle 

roll dynamics using mathematical theory and make it applicable to a practical model. The study aims to 

design and implement a control system which makes the autodriver theoretical roll model applicable to a 

real vehicle. 

 

Implementing a feedback PID control to eliminate the autodriver algorithm errors was expanded in 2018 

[10]. A newly developed algorithm is based on a well-defined road expressed mathematically in a global 

coordinate frame. At any point of the curve, the curvature centre can be calculated and compare, so that 

allow to follow its curvature centre's loci and turn at the right circle of curvature. The steady-state and 

transient responses of turning vehicles and the vehicle's resulting path of motion have been investigated. 

The effect of acceleration can be changed by forwarding velocity. By comparing the vehicle's two responses 

on the roll model, the result could be used to prove the difference between the steady-state and transient 
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state response of the centre of rotation of the vehicle in engineering applications. The engineering 

approximations are well presented and constitute proof of the dynamic vehicle theory using a parameter for 

steering angle and variable forwarding velocity. More specifically, the dynamic rotation centre of vehicles 

is determined and compared with steady-state values. The result is essential to design the autodriver 

algorithm for autonomous vehicles. Moreover, a roll model is more accurate to predict the actual 

phenomenon of the vehicle. 

 

 

In the context of autonomous vehicles, the roll angle constituents assume significant and critical importance, 

and such vehicles are well governed by linear/bicycle equations of motion. Roll movement, before pitch, 

yaw, and bounce, is the most unpleasant movement for passengers. This objective of this article is the 

minimisation of roll motion and its fluctuation by applying vehicle roll dynamics. 

 

 

2) PLANAR-ROLL VEHICLE DYNAMICS  

EQUATIONS OF MOTION 

The model vehicle in this study (the bicycle-roll model) is based on a rigid rollable vehicle moving in the 

osculating plane of the road. The equations of motion of the bicycle-roll vehicle model (Figure 1), attached 

to the vehicle body at its mass centre 𝐶, are governed by the following set of nonlinear coupled ordinary 

differential equations .  
 

 
Figure 1: Bicycle-Roll Vehicle Model 

 

�̇�𝑥 =
𝐹𝑥

𝑚
+ 𝑟𝑣𝑦  

 
(1) 

�̇�𝑦 = (
𝐶𝑟

𝑚
− 𝑣𝑥) +

𝐶𝑝

𝑚
𝑝 +

𝐶𝛽
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𝑣𝑦

+
𝐶𝜑
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(2) 

�̇� =
1

𝐼𝑥

(𝐸𝑟𝑟 + 𝐸𝑝𝑝 + 𝐸𝛽

𝑣𝑥

𝑣𝑦

+ 𝐸𝜑𝜑 + 𝐸𝛿𝛿) 

 

(3) 

�̇� =
1

𝐼𝑍

(𝐷𝑟𝑟 + 𝐷𝑝𝑝 + 𝐷𝛽

𝑣𝑥

𝑣𝑦

+ 𝐷𝜑𝜑 + 𝐷𝛿𝛿) (4) 

 

where 
 

𝐶𝑟 =
𝜕𝐹𝑦

𝜕𝑟
= −

𝑎1

𝑣𝑥

𝐶𝑎𝑓 +
𝑎2

𝑣𝑥

𝐶𝑎𝑟 (5) 
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𝐶𝑝 =
𝜕𝐹𝑦

𝜕𝑝
=

𝐶𝑎𝑓𝐶𝛽𝑓

𝑣𝑥

+
𝐶𝑎𝑟𝐶𝛽𝑟

𝑣𝑥

 

 

(6) 

𝐶𝛽 =
𝜕𝐹𝑦

𝜕𝛽
= −(𝐶𝑎𝑓 + 𝐶𝑎𝑟) 

 

(7) 

𝐶𝜑 =
𝜕𝐹𝑦

𝜕𝜑
= 𝐶𝑎𝑟𝐶𝛿𝜑𝑟 + 𝐶𝑎𝑓𝐶𝛿𝜑𝑓 − 𝐶𝜑𝑓 − 𝐶𝜑𝑟 

 

(8) 

𝐶𝛿 =
𝜕𝐹𝑦

𝜕𝛿
= 𝐶𝑎𝑓 

 

(9) 

 

𝐷𝑟 =
𝜕𝑀𝑧

𝜕𝑟
= −

𝑎1
2

𝑣𝑥

𝐶𝑎𝑓 −
𝑎2

2

𝑣𝑥

𝐶𝑎𝑟  

 

(10) 

𝐷𝑝 =
𝜕𝑀𝑧

𝜕𝑝
=

𝑎1

𝑣𝑥

𝐶𝛽𝑓𝐶𝑎𝑓 −
𝑎2

𝑣𝑥

𝐶𝛽𝑟𝐶𝑎𝑟 

 

(11) 

𝐷𝛽 =
𝜕𝑀𝑧

𝜕𝛽
= −(𝑎1𝐶𝑎𝑓 − 𝑎2𝐶𝑎𝑟) 

 

(12) 

𝐷𝜑 =
𝜕𝑀𝑧

𝜕𝜑
= −𝑎1(𝐶𝜑𝑓 − 𝐶𝑎𝑓𝐶𝛿𝜑𝑓) + 𝑎2(𝐶𝜑𝑟 − 𝐶𝑎𝑟𝐶𝛿𝜑𝑟) 

 

(13) 

𝐷𝛿 =
𝜕𝑀𝑧

𝜕𝛿
= 𝑎1𝐶𝑎𝑓 

 

(14) 

 

𝐸𝑟 =
𝜕𝑀𝑧

𝜕𝑟
= −

𝑎1

𝑣𝑧

𝐶𝑇𝑓𝐶𝑎𝑓 +
𝑎2

𝑣𝑧

𝐶𝑇𝑟𝐶𝑎𝑟  

 

(15) 

𝐸𝑝 =
𝜕𝑀𝑧

𝜕𝑝
=

1

𝑣𝑧

𝐶𝛽𝑓𝐶𝑇𝑓𝐶𝑎𝑓 +
1

𝑣𝑧

𝐶𝛽𝑟𝐶𝑇𝑟𝐶𝑎𝑟 − 𝑐𝜑 

 

(16) 

𝐸𝛽 =
𝜕𝑀𝑧

𝜕𝛽
= −𝐶𝑇𝑓𝐶𝑎𝑓 − 𝐶𝑇𝑟𝐶𝑎𝑟  

 

(17) 

𝐸𝜑 =
𝜕𝑀𝑧

𝜕𝜑
= −𝐶𝑇𝑓(𝐶𝜑𝑓 − 𝐶𝑎𝑓𝐶𝛿𝜑𝑓) − 𝑘𝜑 − 𝐶𝑇𝑟(𝐶𝜑𝑟 − 𝐶𝑎𝑟𝐶𝛿𝜑𝑟) 

 

(18) 

𝐸𝛿 =
𝜕𝑀𝑧

𝜕𝛿
= 𝐶𝑇𝑓𝐶𝑎𝑓 

 

(19) 

 

In the above equations, the steer angle 𝛿 acts as the input, and there is a total of four differential equations 

of motion. In this paper, assume 𝑣𝑥  to be a varying parameter for a third-order system constructed by 

Equations 2-4. The tire forces are assumed to be proportional to the side-slip angles; also, the right and left 

tires’ cornering stiffnesses are assumed to be similar and equal to half of the entire axle’s. 
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STEADY-STATE RESPONSES 

By using the bicycle-roll vehicle model, the primary vehicle responses at steady-state turning are defined 

for the steer angle input for a front-wheel steering vehicle. At steady-state turning, the time derivative of the 

variables are equal to zero, and the equations of motion can be simplified to a set of algebraic equations. 

The steady-state curvature, yaw rate, and side-slip responses which are used in this study are derived and 

simplified as: 

 

𝑆𝜅 =
𝑘

𝛿
=

1

𝜌𝛿
= −

𝑍1

𝑣𝑥𝑍0

 

 

(20) 

𝑆𝑟 =
𝑟

𝛿
=

𝑘

𝛿
𝑣𝑥 = 𝑆𝑘𝑣𝑥 = −

𝑍1

𝑍0

 

 

(21) 

𝑆𝛽 =
𝛽

𝛿
=

𝑍2

𝑍0

 (22) 

 

where 𝑍0, 𝑍1, 𝑍2 are given as: 

 

 

𝑍0 = 𝐸𝛽(𝐷𝑟𝐶𝜑 − 𝐶𝑟𝐷𝜑 + 𝑚𝑣𝑥𝐷𝜑) + 𝐸𝜑(𝐶𝑟𝐷𝛽 − 𝐷𝑟𝐶𝛽 − 𝑚𝑣𝑥𝐷𝛽) + 𝐸𝑟(𝐶𝛽𝐷𝜑

− 𝐷𝛽𝐶𝜑) 

 

(23) 

𝑍1 = 𝐸𝛽(𝐶𝜑𝐷𝛿 − 𝑣𝑥𝐶𝛿𝐷𝜑) − 𝐸𝜑(𝐶𝛽𝐷𝛿 − 𝑣𝑥𝐶𝛿𝐷𝛽) + 𝐸𝑟(𝐶𝛽𝐷𝜑 − 𝐷𝛽𝐶𝜑) 

 
(24) 

𝑍2 = 𝐸𝜙(𝐷𝛿𝑚𝑣𝑥 + 𝐶𝛿𝐷𝑟 − 𝐶𝑟𝐷𝛿) + (𝐶𝜙𝐷𝛿 − 𝐶𝛿𝐷𝜙)𝐸𝑟

+ (𝐶𝑟𝐷𝜙 − 𝐶𝜙𝐷𝑟 − 𝐷𝜙𝑚𝑣𝑥)𝐸𝛿  
(25) 

  

 

3) VEHICLE BEHAVIOUR 

Ground vehicles work in steady-state conditions most of the time. The planar vehicle motion at any instant 

may be described by being in steady-state or transitioning between two steady-state conditions. The steady-

state response of vehicles is dominant in typical public street driving conditions when the velocity and steer 

angle inputs are constant or changing slowly. The transient effect of passenger vehicles is almost negligible 

in terms of the response of dynamic variables’. This feature of the vehicle dynamics allows us to plot a 

steady-state chart for the local coordinates of the instantaneous centre of rotation (ICR) of the bicycle-roll 

vehicle model in the body-fixed frame (Figure 2). Figure 2 shows that the lateral position of the ICR mainly 

depends on the steer angle input from the driver and the longitudinal position is mainly affected by the 

forward velocity. 
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Figure 2: ICR Coordinate in Body Frame (not in scale) 

 

Note that the constant steer angle and constant velocity curves in Figure 2 are not exactly linear. For a given 

radius of rotation 𝜌0, the side-slip angle 𝛽 is dictated by the selection of 𝑣𝑥 or 𝛿. Theoretically, let 𝛿 be free 

and assume there is no friction limit under the tires, the vehicle may negotiate a given turn with any velocity 

at the expense of going under some induced side-slip angle which is not necessarily desirable. To negotiate 

a turn with a given radius, the ICR must be at the same distance from the vehicle body frame; by choosing 

the desired velocity, the required steer angle is determined. The sample point 𝑃 illustrated in the figure 

shows that for the velocity of 20 m/s, it requires a steering angle of around 1.75 degrees to stay on a circular 

road with radius 𝜌0. Considering velocity as the given limiting factor, using Equations 17 and 19, the 

required steer angle to keep a radius of turning 𝜌 is obtained as a function of velocity as: 
 

𝛿𝜌 = 𝛿𝜌(𝑣𝑥) = −
𝑣𝑥𝑍0

𝜌𝑍1

 

 

(26) 

𝛽𝜌 = 𝛽𝜌(𝑣𝑥) =
𝛿𝜌𝑍2

𝑍0

= −
𝑣𝑥𝑍2

𝜌𝑍1

 

 

(27) 

 

which is visualised in Figure 3 for the vehicle of interest. The values of vehicle parameters are as follows: 

 

𝐶𝛼𝑓 = 52000 N/rad 𝐶𝛼𝑟 = 72000 N/rad 𝑚 = 845.4 kg 𝐼𝑧 = 1490 kgm2 𝐼𝑥 = 350 kgm2 

 𝑎1 = 0.909 m 𝑎2 = 1.436 m 𝑘𝜑 = 26612 Nm/rad 𝑐𝜑 = 1700 Nms/rad 
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Figure 3: Variation of side-slip angle versus velocity for a constant radius of curvature 

 

4) AUTONOMOUS CONTROL 

IMPROVED AUTODRIVER ALGORITHM 

 

Vehicles in motion on the road are always turning about the curvature centre of the road at the right curvature 

radius. If we consider a given road 𝐫 = 𝐫 (𝑋, 𝑌, 𝑍, ψ) to be a three-dimensional spatial curve, and the vehicle 

to be driven in the osculating plane, we can calculate the path of curvature centre in the osculation plane, 

both in the global coordinate and the vehicle body coordinate frames. The desired location of the road 

curvature centre must coincide with the vehicle’s rotation centre. If correct inputs 𝛿, 𝑣𝑥 are selected, there 

is no error between the actual position of the vehicle, 𝐫 
𝐺 = 𝐫 

𝐺  (𝑋, 𝑌, 𝑍, ψ) with the desired position 𝐫𝑑 
𝐺 =

𝐫𝑑 
𝐺  (𝑋, 𝑌, 𝑍, ψ). The loci of curvature centre for two sample roads are shown in Figure 4. 
 

 
Figure 4: Sample Roads and their Curvature Centres 

 

Based on the discussion in section II, ideally, we are able to keep the vehicle on any curve as long as we 

choose the correct steer angle and velocity from the ICR chart (Figure 2) to coincide the ICR with the 

curvature centre of the road in the vehicle body coordinate frame. Although this solution is correct as the 

final value, due to the transient period dynamics, it cannot completely eliminate the error between the path 

of motion and the road. In other words, the overall path of motion would have a similar shape to the road 

curve, but there would be an increasing offset as the vehicle moves forwards due to an initial error during 
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the transient stage. To compensate the transient error of path-following, a feedback controller is designed in 

the following section. 
 

CALCULATION OF STEADY-STATE INPUTS 

It can be seen from the axes scales that the steering angle mainly determines the turning radius of the vehicle. 

Although the velocity does make some contribution to the ICR location, its effect is minor, especially for 

small side-slip angles. Therefore, we should assume that the main contribution on the radius of rotation is 

coming from the steer angle and 𝑦0 ≈ 𝜌0. Thus, the steering angle should be set to position the ICR laterally 

correctly (regulating 𝑦0); then the vehicle running at a given velocity will eventually gain the side-slip angle 

𝛽 dictated by the velocity, which causes the longitudinal position of ICR in the body coordinate to match 

the road curvature centre. The desired velocity is usually given as a velocity profile for different sections of 

the road.  
 

ELIMINATION OF TRANSIENT ERROR 

In addition to the ICR, the actual global position of the vehicle is calculated as 
 

𝑋 = ∫ 𝑣𝑥 cos 𝜓 − 𝑣𝑦 sin 𝜓  𝑑𝑡
𝑡

0

 

 

(28) 

𝑌 = ∫ 𝑣𝑥 sin 𝜓 + 𝑣𝑦 cos 𝜓  𝑑𝑡
𝑡

0

 

 

(29) 

which are solved together with Equations 2-4 on the basis of the approximated inputs coming from steady-

state analysis. Any lateral position error in the vehicle’s body frame may be compensated by adjusting the 

steering angle, and any longitudinal position error in the vehicle’s body frame may be compensated by 

adjusting the vehicle’s forward acceleration, and hence the velocity. Road constraint implies that there 

would be no error in the 𝑍 direction. The overall algorithm may be summarised in the following steps: 

 

1. A desired path of motion is given in 3D as 𝐫𝑑 
𝐺 = 𝐫𝑑 

𝐺  (𝑋𝑑(𝑠), 𝑌𝑑(𝑠), 𝑍𝑑(𝑠)) as a function of arc 

length 𝑠, 

2. Differential geometry provides us with location of the road curvature centre in global coordinates 

𝐫𝑐 
𝐺 = 𝐫𝑐 

𝐺  (𝑋𝑐(𝑠), 𝑌𝑐(𝑠), 𝑍𝑐(𝑠)), 

3. Kinematic transformation provides the coordinates of interest (road and its curvature centre) in the 

vehicle body coordinate frame as: 𝐫𝑑 
𝐵 = [𝑥𝑑    𝑦𝑑    𝑧𝑑]𝑇 = 𝑅𝐺 

𝐵  𝐫𝑑 
𝐺 , 𝐫𝑐 

𝐵 = [𝑥𝑐    𝑦𝑐    𝑧𝑐]𝑇 =
𝑅𝐺 

𝐵  𝐫𝑐 
𝐺 , 

4. Steady-state equations determine the required steer angle δ𝑠𝑠(𝑠) for a given speed 𝑣𝑥 and a radius 

of rotation 𝜌 in order to laterally coincide the rotation centre of the vehicle with curvature centre of 

the road. 

5. The lateral error between the desired vehicle position and its actual position in body coordinate 

frame 𝑒𝑦 = 𝑦𝑑 − 𝑦 = 𝑦𝑑 is fed into a feedback controller. The controller provides 𝛿𝑒(𝑠) to adjust 

the total steer angle 𝛿 = 𝛿𝑠𝑠 + 𝛿𝑒 to eliminate the lateral position error. 

6. The longitudinal error between the desired vehicle position and its actual position in the body 

coordinate frame 𝑒𝑥 = 𝑥𝑑 − 𝑥 = 𝑥𝑑  is fed into a longitudinal feedback controller which 

provides �̇�𝑥 to adjust forward velocity and eliminate the longitudinal position error. 

 

As mentioned in steps 1 & 2 above, the desired vehicle location (the road) is a function of the distance 

travelled. However, we may alternatively assume them to be functions of time: 
 

𝐫𝑑 
𝐺 = 𝐫𝑑 

𝐺  (𝑋𝑑(𝑡), 𝑌𝑑(𝑡), 𝑍𝑑(𝑡)), 𝐫𝑐 
𝐺 = 𝐫𝑐 

𝐺  (𝑋𝑐(𝑡), 𝑌𝑐(𝑡), 𝑍𝑐(𝑡)) 
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This assumption defines the ideal vehicle as the one running at a constant given velocity 𝑣𝑥0 on the road, 

without any offset. In other words, the ideal vehicle is considered a kinematic model which can negotiate 

any turn regardless of the velocity and the road curvature. Thus, the effect of dynamic turning is not included 

for the ideal vehicle motion. Such a concept for a moving vehicle is called a Ghost-Car approach. In this 

paper, we set the Autodriver algorithm’s target to follow the ideal Ghost-Car on the road and minimise the 

offset at any time. Figure 5-a visualises the Ghost-Car and the error definitions, all expressed in the vehicle’s 

body coordinate frame.  

 
 

 

 
 

Figure 5a: A visualises the Ghost-Car Error values expressed in body frame 

Figure 6b: path-following strategy using the Ghost-Car approach 

 

An example of a path-following strategy using the Ghost-Car approach is shown in Figure 5-b.  
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CONTROL 

In terms of control terminology, the control layout consists of a feedforward part working on the basis of 

steady-state vehicle behaviour, and two feedback loops to compensate for transient errors and keeping the 

vehicle on the desired point of the road at any time instance. Figure 7 shows the proposed control structure. 
 

 
Figure 7: Block diagram of the control system structure 

 

 

The feedforward provides a quick response of the control system based on the available road data. The 

steady-state behaviour may estimate the vehicle response with considerably good accuracy. Thus, the 

steady-state behaviour is chosen for the feedforward part of the lateral controller. The inclusion of 

feedforward assures that the central portion of the control input is provided to the vehicle as soon as it 

reaches a turn. The transient error, however, needs to be fully compensated in order to achieve a reliable 

autonomous path-following performance. Due to the high level of accuracy of the feedforward, a simple PD 

feedback control is sufficient to close the control loop. Two errors are to be minimised, namely the 

longitudinal and the lateral position errors expressed in the vehicle body coordinate frame 𝑒𝑥, 𝑒𝑦. The lateral 

position error is compensated with a correction signal added to the previously calculated steer angle.  

 

Minimisation of the longitudinal position error requires manipulation of the vehicle’s longitudinal velocity. 

Since a sudden change in velocity cannot happen in a real vehicle, we take its time derivative �̇�𝑥 as the 

control variable for longitudinal adjustment which corresponds to a precise acceleration command to the 

engine or brakes. The total longitudinal acceleration is given as 𝑎𝑥 =  �̇�𝑥 − 𝑟𝑣𝑦, but we only have direct 

control over �̇�𝑥 by the throttle/brake command.  

 

As we have a position control problem, the regulated outputs are, in fact, results of the integration of the 

vehicle’s dynamic variables 𝑣𝑥, 𝑣𝑦 and 𝑟. Therefore, a PD controller would be desirable with the equal part 

having a similar effect to an integrator controller on a first-order system, and the derivative part acts as a 

proportional controller. This would be equivalent to the effect of a PI controller on the system. Thus, the PD 

controller is expected to minimise the steady-state error while the feedforward part provides a quick 

response. The PD gains are tuned manually in this paper. For longitudinal control 𝐶𝑣𝑝 = 1, 𝐶𝑣𝑑 = 1 and 

for lateral control 𝐶𝛿𝑝 = 0.01, 𝐶𝛿𝑑 = 0.025. 
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5) SIMULATION RESULTS 

To investigate the effectiveness of the proposed path-following controller, two scenarios were simulated 

with different road geometries. It is worth noting that an ideal transition between two sections of a road with 

constant curvatures is achieved using a linearly changing curvature function, rather than connecting the two 

sections by making them tangent to each other. Such a linearly changing curvature (e.g. clothoid) provides 

a linearly changing steer angle requirement with no jump, which is physically feasible. The clothoid is 

defined using Fresnel integrals as follows (Marzbani, Jazar & Fard 2015): 

𝑋 = 𝑎 ∫ cos(
𝜋

2
𝑢2) 𝑑𝑢

𝑡

0

= 𝑎 ∫ cos(
𝜋

2
𝑢2) 𝑑𝑢

𝑠/𝑎

0

 

 

(30) 

𝑌 = 𝑎 ∫ sin(
𝜋

2
𝑢2) 𝑑𝑢

𝑡

0

= 𝑎 ∫ sin(
𝜋

2
𝑢2) 𝑑𝑢

𝑠/𝑎

0

 

 

(31) 

where parameter 𝑎 is the scaling parameter and determines the size of the clothoid and 𝑡 is the independent 

variable which may be converted to arc length 𝑠 = 𝑎𝑡 for simplicity. By using clothoid in road geometry 

construction, a smoother performance of the driver’s steering control is expected in the case of a linear 

curvature change.  

 

Figure-of-8 Road 

 

The first scenario investigates the controller’s performance on a road which is designed on the basis of 

transitions between zero and constant curvature (𝜅 = 1/𝜌 = 0.02) sections forming an 8-shaped geometry. 

Such a road geometry is a desirable example to evaluate the controller on. It includes straight parts at the 

origin while having constant curvature turns (circular arcs) at both ends. The transition between left and 

right turns as well as driving into turns are examined at the same time using this road geometry. The 

transitions are achieved using clothoids keeping the curvature of the road continuous throughout the entire 

road. The clothoids are constructed based on a scaling of 𝑎 = 147.195 and a total arc length of 𝑠1 = 137.9 

m. 

 

Figure 8 shows the road geometry and the vehicle’s path of motion starting from the origin towards the 

positive x-axis. The initial and desired velocity of the vehicle is set at 20 m/s. The path of motion shows a 

high accuracy of path following achieved by the Autodriver algorithm. 

  
Figure 8: Figure-of-8 road and vehicle's path of motion 

The required steer angle and the instantaneous velocity of the vehicle are shown in Figure 9. It is observed 

that the steer angle is continuous with negligible fluctuations in order to overcome the transient error. The 

velocity of the vehicle is also kept very close to the desired value (20 m/s) with very small variations to 

compensate for the longitudinal error with respect to the Ghost-Car. 
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Figure 9: Provided velocity and steer angle for figure-8 Road 

Figure 10 shows the time history of the dynamic variables of the system. The continuous and proportional 

increase in the variables shows a smooth control performance. The negative side-slip angle 𝛽 and large roll 

angle of 𝜙 = 5 𝑑𝑒𝑔  show a relatively high velocity condition (Figure 3) and sharpness of the turn 

corresponding to the vehicle running at 20 m/s. The small roll rate 𝑝  history also proves the smooth 

performance of the controller which provides more comfort to the passengers during such a tight turn. The 

yaw velocity 𝑟 is also consistent with the road geometry and does not show fluctuations, thus maximising 

the passenger comfort. 
 



The Archives of Automotive Engineering – Archiwum Motoryzacji 

 
Figure 10: Vehicle's dynamic variables for figure-8 road 

The longitudinal and lateral error values in the body frame are depicted in Figure 11-a,b. The longitudinal 

error is negligible, which is handled by the velocity controller. It shows that the vehicle successfully 

followed the Ghost-Car on the road with minor errors. The lateral error Δ𝑦 gets a maximum of 0.2 m during 

the maneuver which is considered a very good path-following performance at a velocity of 20 m/s and a 

sharp turn with a radius of 50 m. Assuming a lane width of 3 – 3.5 m, the common passenger vehicles have 

approximately 0.5 – 0.75 m from each side to reach the lane margin which is well above the achieved error 

range. 
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Figure 11a: Following Errors in Body Frame for Figure-8 Road in x-direction. 

Figure 12b: Following Errors in Body Frame for Figure-8 Road in y-direction. 

Figure 13c: The location of ICR in the body frame attached to the vehicle 

 

 

The location of ICR in the body frame attached to the vehicle is shown in Figure 11-c. The green loci show 

the desired points for ICR and the blue loci indicate the actual locations of ICR during the manoeuvre. It is 

observed that both curves converge to the same location in steady-state with minor deviation.  
 

 

LANE CHANGE MANOEUVRE 

Another important manoeuvre for evaluation of the path-following control is the lane-change manoeuvre. 

Such a manoeuvre is very popular in the literature and also a quite common practice in every-day driving as 

well as obstacle-avoidance scenarios. To model the desired path rationally, we perform four different 

scenarios with the lane-change virtual road created using clothoids, and with a final section made of a 

straight line (Figure 14). The clothoids are constructed based on a scale of 𝑎 = 80 and a total arc length of 

𝑠1 = 15 m. The Autodriver algorithm successfully drove the vehicle on the intended path at a longitudinal 

velocity of 20 m/s causing the vehicle to displace 3.5 m laterally within 60 m of distance travelled.  

  
Figure 14: Lane-Change Virtual Road and Vehicle Path 

Figure 15 shows the velocity adjustment by the controller to follow the Ghost-Car as well as the required 

steer angle. Due to the short distance travelled and small curvature of the path, the required adjustment in 

longitudinal acceleration of the vehicle is negligible which is a desirable condition from comfort perspective. 

The steer angle history shows continuous behaviour proving the smooth operation of the system. It is 
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important to note that the proportional behaviour of the steer angle is imposed by the selected road geometry 

with linearly changing curvature and it does not represent the only way of performing a lane-change. 

  
Figure 15: Provided Velocity and Steer Angle for Lane-Change Maneuver 

Vehicle response is depicted in Figure 16 in terms of its dynamic variables. Negative side-slip angle 

appeared because of the relatively high vehicle velocity while the maximum roll angle was relatively small 

due to the small curvature of the path. The roll rate 𝑝, however, is larger than the previous manoeuvre 

because of the sudden nature of the lane-change manoeuvre. In other words, the vehicle is steered back and 

forth before it settles at a steady-state. Yaw velocity behaviour of the vehicle is smooth proving a desirable 

performance in terms of passenger comfort.  
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Figure 16: Vehicle's Dynamic Variables for Lane-Change Maneuver 

Longitudinal and lateral errors between the actual and desired vehicle location throughout the manoeuvre 

are shown in Figure 17-a,b. The longitudinal error is negligible due to the small curvature and short travel 

distance, proving the excellent Ghost-Car following ability of the system. The lateral error is also negligible 

at such a relatively high-speed. The maximum lateral error is less than 0.2 m in the returning cycle (second 

half of the lane-change action, between approximately 0 and 30 m travelled). This is due to the nonzero 

initial yaw and lateral velocities in the return cycle (from 30 m to 60 m). In other words, the second stage 

of lane-change will result in an overshoot in the lateral following error. 
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Figure 17a: Following errors in body frame for lane-change maneuver in x-direction. 

Figure 18b: Following errors in body frame for lane-change maneuver in y-direction. 

Figure 19c: The ICR loci in the body coordinate 

 

The ICR loci in the body coordinate is plotted and shown in Figure 17-c. The transient nature of the 

manoeuvre is also observed in this figure. The ICR does not reach the desired (steady-state) location during 

the lane change, but the difference is small, proving the effectiveness of using a steady-state response as 

feed-forward and overall control performance, even for sudden manoeuvres. 
 

6) CONCLUSIONS 

In conclude, in order to cope with the practical implementations, an autodriver algorithm was improved to 

adjust the vehicle position on the desired road with a feed-forward-feedback control algorithm. The steady-

state lateral response was used to accelerate the controller performance in terms of steering, while the 

transient error was eliminated with feedback control. Meanwhile, the longitudinal error was determined 

using a Ghost-Car concept to follow the road at the desired speed by manipulating the longitudinal 

acceleration of the vehicle via feedback control. 

 

It is worth mentioning that any small error between the locations of the vehicle and the road will be amplified 

in the location error of ICR; therefore, by starting from ICR placement and then adjusting transient position 

errors, an accurate and quick performance was achieved which is critical for autonomous vehicle control.  

Simulations are performed for the figure-of-8 and lane-change manoeuvres, which are comprehensive 

indicators of different driving conditions. The results show promising performance of the algorithm in terms 

of path-following, even under sudden manoeuvring requirements. The algorithm was evaluated using a more 

realistic vehicle model (roll model), including the roll motion. Observation of roll behaviour also proved the 

desirable performance of the controller in terms of passenger comfort, proving the efficiency of the proposed 

algorithm both for path-following and passenger comfort. Ideally, to minimise the roll rate, a vehicle can 

control the roll so that occupants can enjoy the comfort inside the vehicle, which fulfils the objective of the 

research.   
 

 

 



The Archives of Automotive Engineering – Archiwum Motoryzacji 

REFERENCES 

[1] Bishop, R 2005, Intelligent vehicle technology and trend, Artech House, Norwood, MA. 

 

[2] Gajek A.: Directions for the development of periodic technical inspection for motor vehicles safety systems. 

The Archives of Automotive Engineering – Archiwum Motoryzacji. 2018;80(2):37-51. 

DOI:10.14669/AM.VOL80.ART3. 

[3] Hansson L.: Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden 

and Norway, Research in Transportation Economics,  2020, 83, 100967, DOI:10.1016/j.retrec.2020.100967. 

[4] Hasan M. H., Hentenryck P.: The benefits of autonomous vehicles for community-based trip sharing, 

Transportation Research Part C: Emerging Technologies, 2021, 124, 102929, DOI:10.1016/j.trc.2020.102929. 

[5] Hong Z. L., Zimmerman N.: Air quality and greenhouse gas implications of autonomous vehicles in 

Vancouver, Canada, Transportation Research Part D: Transport and Environment, 2021, 90, 102676, 

DOI:10.1016/j.trd.2020.102676 

[6] Masmoudi M., Ghazzai H., Frikha M., et al.: Object Detection Learning Techniques for Autonomous Vehicle 

Applications, 2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Cairo, Egypt, 

2019,  1-5, DOI: 10.1109/ICVES.2019.8906437 

[7] Molina C. B. S. T., Almeida J. R. d., L. F. Vismari, et al.: Assuring Fully Autonomous Vehicles Safety by 

Design The Autonomous Vehicle Control (AVC) Module Strategy, 2017 47th Annual IEEE/IFIP International 

Conference on Dependable Systems and Networks Workshops (DSN-W), Denver, CO, 2017, 16-21, DOI: 

10.1109/DSN-W.2017.14. 

[8] Mrowicki A., Kubiak P., Zakrzewicz W.: Nonlinear method of precrash velocity determination for Mini car 

class-B-spline tensors products with probabilistic weights. The Archives of Automotive Engineering – Archiwum 

Motoryzacji. 2020;87(1):97-108. DOI:10.14669/AM.VOL87.ART8. 

[9] Qingwen Xue, Ke Wang, Jian John Lu, Yujie Liu : Rapid Driving Style Recognition in Car-Following Using 

Machine Learning and Vehicle Trajectory Data. Journal of Advanced Transportation 2019. 

DOI:10.1155/2019/9085238 

[10]Santana E. F. Z., Covas G., et al.: Transitioning to a driverless city: Evaluating a hybrid system for 

autonomous and non-autonomous vehicles, Simulation Modelling Practice and Theory, 2021, 107, 102210, 

DOI:10.1016/j.simpat.2020.102210. 

[10] Seyfettin Vadi, P. Sanjeevikumar, F. Blaabjerg, R. Bayindir. 2019 A Review on Optimization and Control 

Methods Used to Provide Transient Stability in Microgrids, doi: 10.3390/en12183582 

 

[11] Sung K., Min K., Choi J.: Driving information logger with in-vehicle communication for autonomous vehicle 

research, 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-

si Gangwon-do, Korea (South), 2018, 300-302, doi: 10.23919/ICACT.2018.8323732. 

https://doi.org/10.1016/j.retrec.2020.100967
https://doi.org/10.1016/j.trc.2020.102929
https://doi.org/10.1016/j.trd.2020.102676
https://www.researchgate.net/profile/Ke-Wang-80?_sg%5B0%5D=dudWftlrCxFJWZQZdPBvngzRXQxJTdN8kpimltwvoEKQNfXT5f60KhUCJEZMx-n300fRwfo.OyPDhy_taO8FuaX7hUR_vBPo-H3gAGVSJMJQC5WirJ539RLcB4dWq2SvZ7QltzS8KvCcTqZG2zO-alvh1xTjbA&_sg%5B1%5D=pv15mRz56TrDyCIaGyxTL9dBoMafIDZ_3lfXAhS7t-RvjZ_evfzb_kmsnHZgV87YoKBF9qw.3j8ZEnt-LVDqCEiKogVXVbI2p8plWGq8Ow2-0tn6LNPnRh6KxxOiyodBL_P6kF0omXJEL5Qb4pC-7JIpMTAmxw
https://www.researchgate.net/scientific-contributions/Jian-John-Lu-2152571439?_sg%5B0%5D=dudWftlrCxFJWZQZdPBvngzRXQxJTdN8kpimltwvoEKQNfXT5f60KhUCJEZMx-n300fRwfo.OyPDhy_taO8FuaX7hUR_vBPo-H3gAGVSJMJQC5WirJ539RLcB4dWq2SvZ7QltzS8KvCcTqZG2zO-alvh1xTjbA&_sg%5B1%5D=pv15mRz56TrDyCIaGyxTL9dBoMafIDZ_3lfXAhS7t-RvjZ_evfzb_kmsnHZgV87YoKBF9qw.3j8ZEnt-LVDqCEiKogVXVbI2p8plWGq8Ow2-0tn6LNPnRh6KxxOiyodBL_P6kF0omXJEL5Qb4pC-7JIpMTAmxw
https://www.researchgate.net/scientific-contributions/Yujie-Liu-2152565772?_sg%5B0%5D=dudWftlrCxFJWZQZdPBvngzRXQxJTdN8kpimltwvoEKQNfXT5f60KhUCJEZMx-n300fRwfo.OyPDhy_taO8FuaX7hUR_vBPo-H3gAGVSJMJQC5WirJ539RLcB4dWq2SvZ7QltzS8KvCcTqZG2zO-alvh1xTjbA&_sg%5B1%5D=pv15mRz56TrDyCIaGyxTL9dBoMafIDZ_3lfXAhS7t-RvjZ_evfzb_kmsnHZgV87YoKBF9qw.3j8ZEnt-LVDqCEiKogVXVbI2p8plWGq8Ow2-0tn6LNPnRh6KxxOiyodBL_P6kF0omXJEL5Qb4pC-7JIpMTAmxw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1155%2F2019%2F9085238?_sg%5B0%5D=VQHboPuHBgOobqtRb_4WLwm4MqviLOzZSouLr9e_7DNja-7DDECwm8rMHbSc28gcAMJ1NPSPitb_rsCAGfOGl5bPrw.sG2IAkxO0JGwQ_h_a3WyATGKvGVZ-ES8oxjnMfTqrFLdtFUkfX8ZOMylNRpzjA4-ab-uRKFULNaL7vU-U0bBuw
https://doi.org/10.1016/j.simpat.2020.102210


The Archives of Automotive Engineering – Archiwum Motoryzacji 

[12] Todorovic M., Simic M., Kumar A.: Managing Transition to Electrical and Autonomous Vehicles, Procedia 

Computer Science, 2017, 112, 2017, 2335-2344, DOI:10.1016/j.procs.2017.08.201. 

[13] Wang J. et al.: Appearance-based Brake-Lights recognition using deep learning and vehicle detection, 2016 

IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 2016, 815-820, doi: 

10.1109/IVS.2016.7535481. 

 
 

 

https://doi.org/10.1016/j.procs.2017.08.201

	Improvement of the Autodriver Algorithm for Autonomous Vehicles Using Roll Dynamics
	Recommended Citation

	30j0zll

