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Abstract: This paper investigates the free vibration and compressive buckling characteristics of
functionally graded graphene nanoplatelets reinforced composite (FG-GPLRC) beams containing
open edge cracks by using the finite element method. The beam is a multilayer structure where the
weight fraction of graphene nanoplatelets (GPLs) remains constant in each layer but varies along
the thickness direction. The effective Young’s modulus of each GPLRC layer is determined by the
modified Halpin-Tsai micromechanics model while its Poisson’s ratio and mass density are predicted
according to the rule of mixture. The effects of GPLs distribution pattern, weight fraction, geometry,
crack depth ratio (CDR), slenderness ratio as well as boundary conditions on the fundamental
frequency and critical buckling load of the FG-GPLRC beam are studied in detail. It was found that
distributing more GPLs on the top and bottom surfaces of the cracked FG-GPLRC beam provides
the best reinforcing effect for improved vibrational and buckling performance. The fundamental
frequency and critical buckling load are also considerably affected by the geometry and dimension of
GPL nanofillers.

Keywords: graphene nanoplatelets; functionally graded nanocomposites; free vibration; buckling;
edge crack

1. Introduction

Graphene reinforced polymer nanocomposites have been attracting considerable attention
from both research and industry communities due to their exceptional mechanical properties [1].
Compared to other reinforcements, such as carbon black (CB) [2], carbon fibers (CFs) [3] and carbon
nanotube (CNT) [4], graphene and its derivatives give better performance among these reinforcements.
Rafiee et al. [5,6] experimentally found that the Young’s modulus of the epoxy composite increased by
31% when reinforced by graphene nanoplatelets (GPLs) while only a 3% increase was achieved when it
was reinforced by CNTs. Tang et al. [7] reported that the graphene reinforced nanocomposite possesses
higher strength and fracture toughness when the graphene is highly dispersed in the polymer matrix.
Liu et al.’s comparative study [8,9] demonstrated that the mechanical properties of graphene reinforcing
alumina ceramic composites is higher than those of monolithic ceramic composites. Lee et al. [10]
synthesized functionalized graphene sheet/epoxy nanocomposites for cryotank application and found
a significant increase in strength and toughness. Some other notable research works also proved that
graphene can significantly increase the elastic stiffness and strength of polymer nanocomposites [11–14].
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In order to make the best use of graphene reinforcements, the concept of functionally graded
materials (FGM) [15,16] is introduced into GPLs reinforced composites. Since it is very difficult to
fabricate a functionally graded structure with GPLs reinforcement varying continuously and smoothly
over thickness direction due to the constraints of current manufacturing technology, Yang and his
co-workers [17–19] introduced a layer-wise functionally graded nanocomposite beam reinforced by
GPLs (FG-GPLRC). Huang et al. [20–22] investigated the nonlinear in-plane instability of composite
arches reinforced by graphene nanoplatelets and found that the buckling behaviors of FG-GPLRC
arches are significantly affected by the GPLRC distribution pattern. Shen et al. [23,24] conducted a
series of studies on the nonlinear bending, thermal buckling and post-buckling of functionally graded
graphene-reinforced composite laminated beams resting on elastic foundations and discussed the
effects of the graphene reinforcement distribution, laminate layer stacking sequence, temperature
variation and foundation stiffness on the mechanical behaviors of the beam in detail. Other notable
research work on this GPLs reinforced composite can also be found in the literature [25–27]. Due to the
mechanical advantages of high stiffness and strength, graphene nanocomposites offer huge potential
in weight-sensitive applications such as aerospace, automotive and marine structures.

It is well known that a crack in a structure can reduce the stiffness of the structure and may
change the mechanical characteristics and also mode shapes of the structure due to the local flexibility
introduced by the crack [28–34]. Lellep et al. [35–37] focused on the problem of vibration and
optimization of elastic solids with and without a crack. Yang and his co-workers [38–41] investigated
the free and nonlinear vibration, buckling and post-buckling of a cracked FGM beam and discussed the
effect of cracks on the mechanical behavior of a FGM beam in detail. However, to the best of the authors’
knowledge, no previous work has been done on cracked graphene reinforced nanocomposite structures,
including any of its mechanical characteristics. Hence, this paper aims to numerically study the free
vibration and buckling behaviors of FG-GPLRC beams with edge cracks by using the finite element
method. The Halpin-Tsai micromechanics model and rule of mixture are employed to determine the
effective Young’s modulus, Poisson’s ratio and mass density, respectively. A comprehensive parametric
study is conducted to examine the effects of the GPL distribution pattern, weight fraction, geometry,
crack depth ratio (CDR), slenderness ratio and boundary conditions of the beam on the characteristics
of the fundamental frequency and the critical buckling load.

2. Effective Material Properties of GPLRC

A FG-GPLRC beam with the dimensions of length L, thickness h and width b consists of multilayer
isotropic polymer materials reinforced by GPLs that uniformly disperses and randomly orients in each
layer, containing an edge crack of depth a located at a distance L1 from the left end as shown in Figure 1a.
Each GPLRC layer has equal thickness and perfectly bonds with each other. As shown in Figure 1b,
the darker color represents a higher content of GPL nanofillers allocated in this layer. For the U-GPLRC
beam, all layers are uniformly dispersed with the same content of GPL nanofillers. The X-GPLRC beam
has higher content of GPL nanofillers on the top and bottom layers of GPL nanofillers. The O-GPLRC
beam has the opposite distribution of GPL nanofillers toward the X-GPLRC beam. The GPL nanofillers
in the A-GPLRC beam gradually increase from the top layer to the bottom layer.
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Among the micromechanical models used to predict the effective elastic modulus of GPLRC such
as the Halpin-Tsai model [42], Mori-Tanaka model [43,44] and Voigt model [45], etc., the Halpin-Tsai
model is used in the present work since it has been experimentally demonstrated that this model gives
a better prediction for the elastic modulus of GPLRC than other models [46]. Hence, the effective
Young’s modulus of each GPLRC layer is evaluated using the Halpin-Tsai model as follows,

E =
3Em

8

1 + ξLηLV(k)
GPL

1− ηLV(k)
GPL

+
5Em

8

1 + ξTηTV(k)
GPL

1− ηTV(k)
GPL

(1)

where the parameters ηL and ηT are expressed as follows,

ηL =
(EGPL/Em) − 1
(EGPL/Em)+ξL

, ηT =
(EGPL/Em) − 1
(EGPL/Em)+ξT

(2)

in which EGPL and Em are moduli of the GPL and matrix, respectively. The geometry factors ξL and ξT

of GPLs considered in Equation (1) are defined by

ξL = 2(aGPL/tGPL), ξL = 2(bGPL/tGPL) (3)

where aGPL, bGPL and tGPL are the length, width and thickness of GPLs, respectively, and therefore

ξ = 2(aGPL/bGPL)(bGPL/tGPL) (4)

where aGPL/bGPL is the aspect ratio and bGPL/tGPL is the width-to-thickness ratio. The k-th layer volume
fraction of GPLs V(k)

GPL considered in Equation (1) takes the form of

U-GPLRC : V(k)
GPL = V∗GPL, (5)

X-GPLRC : V(k)
GPL= 2V∗GPL|2k−NL − 1|/NL, (6)

O-GPLRC : V(k)
GPL= 2V∗GPL(1− |2k−NL − 1|/NL), (7)

A-GPLRC : V(k)
GPL = V∗GPL(2k− 1)/NL, (8)

where the total number of layers for the beam is NL and k = 1, 2, . . . , NL. The total GPL volume fraction
V∗GPL is expressed by

V∗GPL =
WGPL

WGPL + (ρGPL/ρm)(1−WGPL)
, (9)

where WGPL is the total GPL weight fraction in the whole beam.
Since the Halpin-Tsai model can only give the elastic modulus, the mass density ρ and Poisson’s

ratio υ of GPLs reinforced composite materials are determined by employing the rule of mixture in this
paper [23–25].

ρ = ρmVm + ρGPLVGPL (10)

υ = υmVm + υGPLVGPL (11)

where ρGPL and ρm are mass densities of the GPL and the matrix, υGPL and υm are Poisson’s ratios of
the GPL and the matrix, respectively. The volume fractions VGPL and Vm are related by Vm + VGPL = 1.

3. Finite Element Implementation

In this paper, ANSYS 14.5 (ANSYS, Inc., Cannonsburg, PA, USA) is employed as the finite element
(FE) package to compute the natural frequencies and the buckling loads of FG-GPLRC beams with edge
cracks. The crack is assumed to locate perpendicularly to the top surface along the width direction
of the GPLRC layer and has a V-shaped. In finite element simulation, a structural solid element
PLANE183 is used to model the cracked FG-GPLRC beam model, and the multi-layered GPLRC
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modelled by PLANE183 element is perfectly glued layer-by-layer. The mesh grid of the beam and
around the crack tip is shown in Figure 2. For the GPLRC layers with a crack, singular elements as
shown in Figure 2b are used to mesh the area in the vicinity of the crack to model the stress singularity
at the crack tip. For the GPLRC layers without crack, 200 rectangular elements with the same thickness
as a single GPLRC layer are adopted to mesh the perfect GPLRC layer.
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For the finite element method, the model of the cracked FG-GPLRC beam is discretized into
an assemblage of discrete finite elements, which are interconnected at the nodal points on element
boundaries. The displacement field can be represented using the nodal displacements, which is
approximated over each finite element. The equations of motion can then be formulated using
the displacement-based formulation in conjunction with the principle of virtual displacements.
These equations of motion can be written as [47],

M
..
U + (Ke + Kσ)U = 0, (12)

where overdots indicate differentiation with respect to time, M, Ke and Kσ are the mass matrix, bending
stiffness matrix and geometric stiffness matrix that are dependent on the effective Young’s modulus,
Poisson’s ratio and mass density determined from the Halpin-Tsai model (Equations (1)–(9)) and rule
of mixture (Equations (10) and (11)) and contain crack parameters of the FG-GPLRC beam, respectively.
It should be noted that the geometric stiffness matrix depends on the pre-stressed state in the structure
as well.

For the harmonic free vibration, Equation (12) yields(
Ke −ω

2M
)
U = 0, (13)

where ω represents the fundamental frequency of the FG-GPLRC beam.
For the elastic buckling, the critical buckling load can be obtained from Equation (12) by neglecting

the inertia terms. An eigenvalue equation can be derived as

(Ke + λKσ)U = 0, (14)

from which the critical buckling load of the beam can be obtained by solving the equation det(K + λKσ) = 0,
where the scale parameter λrepresents the critical buckling load.

It should be noted that due to the multi-layered nature of the beam, the homogeneous element
formulation which assumes constant material properties within each element is used in the present
study. Such an approximation requires uniform and fine meshing along the beam thickness. Otherwise,
a graded element formulation [48] in which the material properties are graded at element level is more
appropriate and should be used for more accurate analysis.
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4. Results and Discussion

4.1. Verification

The size and mechanical parameters of the isotropic homogeneous Timoshenko beam employed
in this study are: length L = 0.2 m, height h = 0.0078 m, Young’s modulus E = 216 GPa, density
ρ = 7850 kg/m3 and Poisson ratio v = 0.28. The first natural frequencies of a clamped-free (C-F) beam
with an open edge crack of depth a/h = 0.2 at different locations (L1/L = 0.2, 0.4, 0.6) are compared with
that of an intact beam in Table 1. The results obtained by the present method show good agreement
with the analytical results obtained by Ke et al. [38].

Table 2 compares the critical buckling load and dimensionless fundamental frequency for an
intact C-C FG-X-GPLRC beam based on the present method with the corresponding results for an
intact FG-GPLRC based on the first shear deformation theory [49]. Again, the results also achieve
excellent agreement.

Table 1. Comparison of fundamental frequency for a cracked isotropic homogenous clamped-free
(C-F) beam.

Comparison Results L1/L = 0.2 L1/L = 0.4 L1/L = 0.6 Intact Beam

Present 1019.9 1029.9 1035.2 1036.9
Ke et al. [38] 1020.98 1029.853 1034.932 1037.0106

Table 2. Comparison of buckling and free vibration results for an intact clamped-clamped (C-C)
FG-X-GPLRC beam.

Comparison Results Pcr w1

Present 0.0090 0.3359
Wu et al. [49] 0.0089 0.3350

(N = 11, NL = 10, L/h = 30, WGPL = 0.3%).

In what follows, the free vibration behaviors and elastic buckling characteristics of edge cracked
FG-GPLRC beams with three types of boundary conditions, namely, clamped-free (C-F); hinged-hinged
(H-H), and clamped-clamped (C-C) are investigated. The cracked beam has a cross-section with
b × h = 0.03 m × 0.06 m and has an edge crack with depth a. Each GPLRC layer of the beam is made
from a mixture of epoxy and GPLs with aGPL = 2.5 µm, bGPL = 1.5 µm and tGPL = 1.5 nm. The Young’s
moduli and mass densities of the epoxy and GPLs are 3 GPa, 1200 kg/m3 and 1010 GPa, 1062.5 kg/m3,
and the Poisson’s ratios υ of the epoxy and GPLs are 0.186 and 0.34, respectively. Moreover, it was
concluded in our previous work [17–19] that an ideal functionally graded beam which is continuous in
material properties and composition can be accurately modelled using a multilayer FG-GPLRC beam
with NL = 10. Thus, NL = 10 is used in all of the following numerical analyses.

4.2. Free Vibration Analysis

Figure 3 illustrates the fundamental vibration mode shapes of functionally graded X-GPLRC
beams in the presence of a crack. The results for the perfect beams without a crack are also provided for
comparison. Based on the fact that the mode shape can be arbitrarily scaled, it is evident that virtually
the mode shape is not affected by the edge crack.

Table 3 gives information about the dimensionless fundamental frequencies ω1/ω10 for C-C
cracked FG-GPLRC beams with CDR (a/h) = 0.3. Noted that ω1 is the fundamental frequency of
cracked FG-GPLRC beams, and ω10 is the fundamental frequency of pure epoxy beam without a crack.
As shown in Table 3, the fundamental frequencies for C-C cracked FG-GPLRC beams with different
weight fractions and distribution patterns of GPLs are tabulated. A higher bending stiffness of the
cracked FG-X-GPLRC beam can be obtained by dispersing more GPLs filler in two sides of the layers.
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As a result, the beam with this kind of GPLs distribution patterns (FG-X) has a greater fundamental
frequency followed by the FG-U-, FG-A- and FG-O-GPLRC beams. In addition, there is an increase in
all of the fundamental frequencies with the increase in the GPLs weight fraction. The fundamental
frequencies of cracked FG-GPLRC beams for different crack positions are much greater than those of
the pure epoxy beams, illustrating the considerable reinforcement effect of GPLs.
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Figure 3. Fundamental vibration mode shapes of intact and cracked FG-X-GPLRC beams.

Table 3. Dimensionless fundamental frequencies ω1/ω10 of cracked C-C FG-GPLRC beams. (L/h = 30,
aGPL/bGPL = 4, bGPL/tGPL = 103, CDR = 0.3).

Distribution Patterns WGPL
L1/L

0.2 0.5 0.8

U-GPLRC
0.1% 1.1567 1.1328 1.1567
0.3% 1.4200 1.3906 1.4200
0.5% 1.6417 1.6074 1.6417

X-GPLRC
0.1% 1.2229 1.1929 1.2229
0.3% 1.5762 1.5310 1.5762
0.5% 1.8628 1.8047 1.8627

O-GPLRC
0.1% 1.0856 1.0666 1.0856
0.3% 1.2393 1.2212 1.2393
0.5% 1.3758 1.3574 1.3758

A-GPLRC
0.1% 1.1447 1.1189 1.1447
0.3% 1.3604 1.3277 1.3604
0.5% 1.5332 1.4946 1.5332

Pure epoxy 0.0% 0.9994 0.9785 0.9994

Figure 4 gives information about the effect of the geometry and dimension of GPLs on the
fundamental frequencies of the C-C cracked FG-X-GPLRC beam by using the parameters as the aspect
ratio (aGPL/bGPL) and width-to-thickness ratio (bGPL/tGPL). When the width bGPL of GPL is kept constant,
a larger value of aspect ratio (aGPL/bGPL) shows that a single graphene layer with larger surface area,
and a greater magnitude width-to-thickness ratio (bGPL/tGPL) reflects fewer single graphene layers.
The numerical results show that the fundamental frequencies increase with the aGPL/bGPL and bGPL/tGPL,
and the increases are limited after aGPL/bGPL = 4 and bGPL/tGPL = 103, respectively. It was also found
that smaller fundamental frequencies appear when the crack is located near two ends and at the
mid-span of the beam. Figure 5 shows that the fundamental frequency ratios increase as both aGPL/bGPL
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and bGPL/tGPL increase. While the changes are much less pronounced when bGPL/tGPL is close to 103,
beyond this the fundamental frequency remains almost unchanged.
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Figure 4. Effects of (a) aspect ratio (b) width-to-thickness ratio on the fundamental frequency of the
C-C cracked FG-X-GPLRC beam.
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Figure 5. Effect of GPL geometry on fundamental frequency of C-C cracked FG-X-GPLRC beam.

Table 4 lists the dimensionless fundamental frequencies of the C-C cracked FG-X-GPLRC beam
with different CDRs where CDR = 0.0 indicates a beam without crack. It is found that the existence of
the crack is remarkable for the change of fundamental frequencies of the beam, and the fundamental
frequencies decrease as the CDR increases. The reason is that there is a more drastic decline in stiffness
due to the rise of crack depth ratios in the beam.

Table 4. Dimensionless fundamental frequencies ω1/ω10 of cracked FG-X-GPLRC beams with different
CDR (L/h = 30, aGPL/bGPL = 4, bGPL/tGPL = 103, WGPL= 0.5%, C-C).

CDR
L1/L

0.02 0.2 0.5 0.8 0.98

0.0 1.8643 1.8643 1.8643 1.8643 1.8643
0.1 1.8513 1.8642 1.8584 1.8642 1.8513
0.2 1.8127 1.8637 1.8392 1.8637 1.8127
0.3 1.7513 1.8628 1.8047 1.8627 1.7518
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Figure 6 compares the first two frequencies of the FG-X-GPLRC with different boundary conditions.
It can be found that variations in the second frequencies of the cracked FG-X-GPLRC beam with
different boundary conditions seem to be much more complicated than those for the fundamental
frequencies. From the Figure 6a,b, the lowest frequencies for the first two frequencies of the C-C and
C-F beams are found to be at the same locations. However, for the H-H beam, it has the lowest ratio
at L1/L = 0.5 for the fundamental frequency, and at L1/L = 0.2, 0.8 for the second frequency. Figure 7
shows that the C-C cracked FG-X-GPLRC beam with a lower slenderness ratio has a much greater
fundamental frequency due to its much greater bending rigidity.Materials 2019, 12, x FOR PEER REVIEW 9 of 14 
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Figure 6. First two frequencies ratios of cracked FG-X-GPLRC beams with different boundary conditions:
(a) C-F, (b) C-C, (c) H-H.
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4.3. Buckling Analysis

Figure 8 plots the buckling mode shape of the FG-X-GPLRC beam with or without an open edge
crack. Similar to the vibration mode shapes in Figure 3, the buckling mode shape is not sensitive to the
edge crack. Figure 9 shows the critical buckling load for cracked C-C FG-GPLRC beams with different
distribution patterns of GPL. The FG-X-GPLRC beam gives the highest critical buckling load because
layers at two sides of the beam, where the greater normal bending stress appears, distribute more
GPLs. Hence, the FG-X-GPLRC beam produces the best reinforcing effect among the four kinds of
beams. Table 5 shows that the critical buckling loads of the FG-X-GPLRC beam are clearly higher than
those of the pure epoxy beam (WGPL = 0.0%) and increase as GPL weight fraction increases.
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Table 5. Critical buckling loads of cracked C-C FG-X-GPLRC beams with different weight fraction
(L/h = 30, aGPL/bGPL = 4, bGPL/tGPL = 103, CDR = 0.3).

WGPL
L1/L

0.02 0.2 0.5 0.8 0.98

0.0% 0.9425 0.9941 0.9394 0.9941 0.9429
0.1% 1.3980 1.4885 1.3917 1.4885 1.3988
0.3% 2.2980 2.4727 2.2820 2.4728 2.2980
0.5% 3.1880 3.4529 3.1618 3.4530 3.1880



Materials 2019, 12, 1412 10 of 13

Figure 10 compares the effects of GPLs geometry and dimensions on the critical buckling load
of the FG-X-GPLRC beam with an edge crack. It is observed that the changes of the critical buckling
load are more sensitive to the GPLs width-to-thickness ratio (bGPL/tGPL) (Figure 10b) than those of the
aspect ratio (aGPL/bGPL) (Figure 10a), although the critical buckling loads increase as both bGPL/tGPL

and aGPL/bGPL. It is also seen that the smaller critical buckling loads for the C-C FG-X-GPLRC beam
occur when the edge crack is located at the mid-span or near the end of the beam, which is similar to
the results of the free vibration analysis (Figure 4).
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Figure 10. Effects of (a) aspect ratio and (b) width-to-thickness ratio on the critical buckling load of
cracked FG-X-GPLRC beam.

Figure 11 illustrates the critical buckling loads of C-C, C-F and H-H beams with the edge crack at
different crack locations. It is clear that there are symmetric critical buckling loads with respect to the
crack location curves of C-C and H-H beams, which have geometrical symmetry. For the C-F beam,
the highest and lowest critical buckling loads occur when the edge crack is located at the free end and
restrained end, respectively.

Table 6 lists the critical buckling loads of C-C cracked FG-X-GPLRC beam with various CDR
a/h and slenderness ratio L/h. It can be found that the CDR has a significant influence on the critical
buckling loads of the cracked FG-X-GPLRC beam, and the critical buckling loads decrease as CDR
increases. It is noted that a lower slenderness ratio leads to a much greater critical buckling load
as expected.
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Figure 11. Critical buckling load of cracked FG-X-GPLRC beams with different boundary conditions.



Materials 2019, 12, 1412 11 of 13

Table 6. Critical buckling loads of C-C cracked FG-X-GPLRC beams (L1/L = 0.5, aGPL/bGPL = 4,
bGPL/tGPL = 103, WGPL = 0.5%).

CDR
L/h

20 30 40

0.0 7.6778 3.4855 1.9753
0.1 7.5725 3.4537 1.9615
0.2 7.2426 3.3531 1.9172
0.3 6.6581 3.1618 1.8336

5. Conclusions

This paper illustrates the free vibration and buckling behaviors of graphene nanoplatelets
reinforced functionally graded beams with edge cracks by using finite element modelling. The effective
material properties of GPLRC were determined by the Halpin-Tsai micromechanics model. Numerical
results are shown in both graphical and tabular forms to examine the influences of GPLs distribution
pattern, weight fraction, GPLs geometry, crack depth and location, the slenderness ratio as well as
the boundary conditions of the beam on the fundamental frequency and critical buckling load of the
cracked FG-GPLRC beam. It was found that the fundamental frequency and critical buckling load
drop with the increase in crack depth, and the lowest fundamental frequency and critical buckling
load of C-C and H-H beams are found when the crack is located in the midspan. However, for the C-F
beam, the lowest values are determined when the crack is located at the end. The cracked FG-GPLRC
beam with more GPLs distributed near the surface, which has a greater natural frequency and critical
buckling load than the other distribution patterns, makes more effective use of GPL reinforcements.
It was also found that the influences of the geometry and size of GPL nanofillers are quite significant
but limited when the bGPL/tGPL of GPLs is higher than 103. This paper also discussed and analyzed the
influences of the slenderness ratio and boundary conditions through illustrative numerical examples.

Author Contributions: Conceptualization, J.Y.; Methodology, M.T., Z.Y., J.Y.; Software, M.T., Z.Y.; Validation,
M.T., Z.Y.; Formal Analysis, M.T., Z.Y.; Investigation, M.T., S.Z., J.Y.; Resources, J.Y.; Data Curation, M.T., Z.Y.;
Writing—Original Draft Preparation, M.T.; Writing—Review and Editing, J.Y., Z.Y., S.Z.; Visualization, Z.Y., S.Z.;
Supervision, J.Y.; Project Administration, J.Y.; Funding Acquisition, J.Y.

Funding: The present research work is funded by a research grant from the Australian Research Council under
Discovery Project scheme (DP160101978).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Winey, K.I.; Vaia, R.A. Polymer nanocomposites. MRS Bull. 2007, 32, 314–322. [CrossRef]
2. Ahankari, S.S.; Kar, K.K. Processing of styrene butadiene rubber–carbon black nanocomposites with gradation

of crosslink density: Static and dynamic mechanical characterization. Mater. Sci. Eng. A 2008, 491, 454–460.
[CrossRef]

3. Bafekrpour, E.; Yang, C.; Natali, M.; Fox, B. Functionally graded carbon nanofiber/phenolic nanocomposites
and their mechanical properties. Compos. Part A Appl. Sci. Manu. 2013, 54, 124–134. [CrossRef]

4. Thostenson, E.T.; Chou, T.W. On the elastic properties of carbon nanotube-based composites: Modelling and
characterization. J. Phy. D Appl. Phy. 2003, 36, 573. [CrossRef]

5. Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.H.; Yu, Z.Z.; Koratkar, N. Enhanced mechanical properties of
nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890. [CrossRef]

6. Rafiee, M.A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.H.; Yu, Z.Z.; Koratkar, N. Fracture and fatigue in
graphene nanocomposites. Small 2010, 6, 179–183. [CrossRef]

7. Tang, L.C.; Wan, Y.; Yan, D.; Pei, Y.B.; Zhao, L.; Li, Y.B.; Wu, L.B.; Jiang, J.X.; Lai, G.Q. The effect of graphene
dispersion on the mechanical properties of graphene/epoxy composites. Carbon 2013, 60, 16–27. [CrossRef]

8. Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites.
Ceram. Int. 2013, 39, 6215–6221. [CrossRef]

http://dx.doi.org/10.1557/mrs2007.229
http://dx.doi.org/10.1016/j.msea.2008.02.018
http://dx.doi.org/10.1016/j.compositesa.2013.07.009
http://dx.doi.org/10.1088/0022-3727/36/5/323
http://dx.doi.org/10.1021/nn9010472
http://dx.doi.org/10.1002/smll.200901480
http://dx.doi.org/10.1016/j.carbon.2013.03.050
http://dx.doi.org/10.1016/j.ceramint.2013.01.041


Materials 2019, 12, 1412 12 of 13

9. Liu, J.; Li, Z.; Yan, H.; Jiang, K. Spark plasma sintering of alumina composites with graphene platelets and
silicon carbide nanoparticles. Adv. Eng. Mater. 2014, 16, 1111–1118. [CrossRef]

10. Lee, J.K.; Song, S.; Kim, B. Functionalized graphene sheets-epoxy based nanocomposite for cryotank
composite application. Polym. Compos. 2012, 33, 1263–1273. [CrossRef]

11. Ji, X.Y.; Cao, Y.P.; Feng, X.Q. Micromechanics prediction of the effective elastic moduli of graphene
sheet-reinforced polymer nanocomposites. Model. Simul. Mater. Sci. Eng. 2010, 18, 045005. [CrossRef]

12. Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W. Effects of particle size, particle/matrix interface adhesion and particle
loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961.
[CrossRef]

13. Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2015, 43,
6515–6530. [CrossRef]

14. Safaei, B.; Fattahi, A.M. Free Vibrational response of single-layered graphene sheets embedded in an elastic
matrix using different nonlocal plate models. Mechanika 2017, 23, 678–687.

15. Yamanoushi, M.; Koizumi, M.; Hiraii, T.; Shiota, I.; FGM-90. Proceedings of the First International Symposium on
Functionally Gradient Materials; Elsevier: Amsterdam, The Netherlands, 1990.

16. Ichikawa, K. Functionally Graded Materials in the 21st Century: A Workshop on Trends and Forecasts; Springer:
New York, NY, USA, 2001.

17. Feng, C.; Kitipornchai, S.; Yang, J. Nonlinear free vibration of functionally graded polymer composite beams
reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 2017, 140, 110–119. [CrossRef]

18. Feng, C.; Kitipornchai, S.; Yang, J. Nonlinear bending of polymer nanocomposite beams reinforced with
non-uniformly distributed graphene platelets (GPLs). Compos. Part B Eng. 2017, 110, 132–140. [CrossRef]

19. Yang, J.; Wu, H.; Kitipornchai, S. Buckling and postbuckling of functionally graded multilayer graphene
platelet-reinforced composite beams. Compos. Struct. 2017, 161, 111–118. [CrossRef]

20. Huang, Y.H.; Yang, Z.C.; Liu, A.R.; Fu, J.Y. Nonlinear buckling analysis of functionally graded graphene
reinforced composite shallow arches with elastic rotational constraints under uniform radial load. Materials
2018, 11, 910. [CrossRef]

21. Yang, Z.C.; Yang, J.; Liu, A.R.; Fu, J. Nonlinear in-plane instability of functionally graded multilayer graphene
reinforced composite shallow arches. Compos. Struct. 2018, 204, 301–312. [CrossRef]

22. Yang, Z.C.; Huang, Y.; Liu, A.R.; Fu, J.Y.; Wu, D. Nonlinear in-plane buckling of fixed shallow functionally
graded graphene reinforced composite arches subjected to mechanical and thermal loading. Appl. Math. Model.
2019, 70, 315–327. [CrossRef]

23. Shen, H.S.; Lin, F.; Xiang, Y. Nonlinear bending and thermal postbuckling of functionally graded
graphene-reinforced composite laminated beams resting on elastic foundations. Eng. Struct 2017, 140, 89–97.
[CrossRef]

24. Shen, H.S.; Xiang, Y.; Lin, F. Nonlinear vibration of thermally postbuckled FG-GRC laminated beams resting
on elastic foundations. Int. J. Struct. Stab. Dyn. 2019, 1950051. [CrossRef]

25. Barati, M.R.; Zenkour, A.M. Post-buckling analysis of refined shear deformable graphene platelet reinforced
beams with porosities and geometrical imperfection. Compos. Struct. 2017, 181, 194–202. [CrossRef]

26. Mao, J.J.; Zhang, W. Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric
composite plate under external voltage excitation. Compos. Struct. 2018, 203, 551–565. [CrossRef]

27. Liu, Z.; Yang, C.; Gao, W.; Wu, D.; Li, G. Nonlinear behaviour and stability of functionally graded porous
arches with graphene platelets reinforcements. Int. J. Eng. Sci. 2019, 137, 37–56. [CrossRef]

28. Dimarogonas, A.D. Vibration of cracked structures: A state of the art review. Eng. Fract. Mech. 1996, 55,
831–857. [CrossRef]

29. Volkov Udc, V.A.; Rademacher, T.; Zehn, M. Modal triggered nonlinearities for damage localization in thin
walled FRC structures—A numerical study. Facta Univ.-Ser. Mech. Eng. 2016, 14, 21–36.

30. Fernandez-Saez, J.; Rubio, L.; Navarro, C. Approximate calculation of the fundamental frequency for bending
vibrations of cracked beams. J. Sound Vib. 1999, 225, 345–352. [CrossRef]

31. Chondros, T.G.; Dimarogonas, A.D.; Yao, J. A continuous cracked beam vibration theory. J. Sound Vib. 1998,
215, 17–34. [CrossRef]

32. Shifrin, E.I.; Ruotolo, R. Natural frequencies of a beam with an arbitrary number of cracks. J. Sound Vib. 1999,
222, 409–423. [CrossRef]

http://dx.doi.org/10.1002/adem.201300536
http://dx.doi.org/10.1002/pc.22251
http://dx.doi.org/10.1088/0965-0393/18/4/045005
http://dx.doi.org/10.1016/j.compositesb.2008.01.002
http://dx.doi.org/10.1021/ma100572e
http://dx.doi.org/10.1016/j.engstruct.2017.02.052
http://dx.doi.org/10.1016/j.compositesb.2016.11.024
http://dx.doi.org/10.1016/j.compstruct.2016.11.048
http://dx.doi.org/10.3390/ma11060910
http://dx.doi.org/10.1016/j.compstruct.2018.07.072
http://dx.doi.org/10.1016/j.apm.2019.01.024
http://dx.doi.org/10.1016/j.engstruct.2017.02.069
http://dx.doi.org/10.1142/S0219455419500512
http://dx.doi.org/10.1016/j.compstruct.2017.08.082
http://dx.doi.org/10.1016/j.compstruct.2018.06.076
http://dx.doi.org/10.1016/j.ijengsci.2018.12.003
http://dx.doi.org/10.1016/0013-7944(94)00175-8
http://dx.doi.org/10.1006/jsvi.1999.2251
http://dx.doi.org/10.1006/jsvi.1998.1640
http://dx.doi.org/10.1006/jsvi.1998.2083


Materials 2019, 12, 1412 13 of 13

33. Hsu, M.H. Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the
differential quadrature method. Comput. Method. Appl. Mech. Eng. 2005, 194, 1–17. [CrossRef]

34. Yokoyama, T.; Chen, M.C. Vibration analysis of edge-cracked beams using a line-spring model. Eng. Fract. Mech.
1998, 59, 403–409. [CrossRef]

35. Lellep, J.; Roots, L. Vibrations of cylindrical shells with circumferential cracks. WSEAS Tran. Math. 2010, 9,
689–699.

36. Lellep, J.; Kägo, E. Vibrations of elastic stretched strips with cracks. Int. J. Mech. 2011, 5, 27–34.
37. Lellep, J.; Majak, J. On optimal orientation of nonlinear elastic orthotropic materials. Struct. Optim. 1997, 14,

116–120. [CrossRef]
38. Ke, L.L.; Yang, J.; Kitipornchai, S.; Xiang, Y. Flexural vibration and elastic buckling of a cracked Timoshenko

beam made of functionally graded materials. Mech. Adv. Mater. Struct. 2009, 16, 488–502. [CrossRef]
39. Yang, J.; Chen, Y. Free vibration and buckling analyses of functionally graded beams with edge cracks.

Compos. Struct. 2008, 83, 48–60. [CrossRef]
40. Yan, T.; Yang, J.; Kitipornchai, S. Nonlinear dynamic response of an edge-cracked functionally graded

Timoshenko beam under parametric excitation. Nonlinear Dyn. 2012, 67, 527–540. [CrossRef]
41. Ke, L.L.; Yang, J.; Kitipornchai, S. Postbuckling analysis of edge cracked functionally graded Timoshenko

beams under end shortening. Compos. Struct. 2009, 90, 152–160. [CrossRef]
42. Affdl, J.C.H.; Kardos, J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352. [CrossRef]
43. García-Macías, E.; Rodriguez-Tembleque, L.; Sáez, A. Bending and free vibration analysis of functionally

graded graphene vs. carbon nanotube reinforced composite plates. Compos. Struct. 2018, 186, 123–138.
[CrossRef]

44. Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions.
Acta Metall. 1973, 21, 571–574. [CrossRef]

45. Sperling, L.H.; Sperling, L.H. Introduction to Physical Polymer Science; Wiley: New York, NY, USA, 2006.
46. King, J.A.; Klimek, D.R.; Miskioglu, I.; Odegard, D.M. Mechanical properties of graphene nanoplatelet/epoxy

composites. J. Appl. Polym. Sci. 2013, 128, 4217–4223. [CrossRef]
47. ANSYS 14.5. Available online: https://www.ansys.com/products/all-products (accessed on 8 March 2019).
48. Martínez-Pañeda, E. On the finite element implementation of functionally graded materials. Materials 2019,

12, 287. [CrossRef]
49. Wu, H.; Yang, J.; Kitipornchai, S. Dynamic instability of functionally graded multilayer graphene

nanocomposite beams in thermal environment. Compos. Struct. 2017, 162, 244–254. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cma.2003.08.011
http://dx.doi.org/10.1016/S0013-7944(97)80283-4
http://dx.doi.org/10.1007/BF01812513
http://dx.doi.org/10.1080/15376490902781175
http://dx.doi.org/10.1016/j.compstruct.2007.03.006
http://dx.doi.org/10.1007/s11071-011-0003-9
http://dx.doi.org/10.1016/j.compstruct.2009.03.003
http://dx.doi.org/10.1002/pen.760160512
http://dx.doi.org/10.1016/j.compstruct.2017.11.076
http://dx.doi.org/10.1016/0001-6160(73)90064-3
http://dx.doi.org/10.1002/app.38645
https://www.ansys.com/products/all-products
http://dx.doi.org/10.3390/ma12020287
http://dx.doi.org/10.1016/j.compstruct.2016.12.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Vibration and Buckling Characteristics of Functionally Graded Graphene Nanoplatelets Reinforced Composite Beams with Open Edge Cracks
	Recommended Citation

	Introduction 
	Effective Material Properties of GPLRC 
	Finite Element Implementation 
	Results and Discussion 
	Verification 
	Free Vibration Analysis 
	Buckling Analysis 

	Conclusions 
	References

