Aqueous extract of Danshen (Salvia miltiorrhiza Bunge) protects ovariectomized rats fed with high-fat diet from endothelial dysfunction

Document Type

Journal Article

Publication Date



Danshen, Aqueous extract, Ovariectomized, High-fat diet, Endothelial dysfunction




Objective: Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in postmenopausal women. Danshen, the dried root of Salvia miltiorrhiza Bunge, has been used clinically in China to treat CVD and dyslipidemia in postmenopausal women, and its major active ingredients have been found to have an estrogenic effect. The aim of this study was to elucidate the underlying mechanism of danshen’s protective effects on vascular function in an ovariectomized (OVX) hyperlipidemic rat model.

Methods: Thirty-five 6-month-old female Sprague-Dawley rats were randomly divided into five groups: sham-operated rats with low-fat control diet + vehicle, sham-operated rats with high-fat diet (HFD) + vehicle, OVX rats with HFD + vehicle, OVX rats with HFD + 17β-estradiol (1 mg kg−1 d−1, PO), and OVX rats with HFD + danshen aqueous extract (600 mg kg−1 d−1, PO). After 12 weeks of treatment, gains in body weight and serum lipid profile levels in rats were measured and histological examination of livers was carried out. Vascular function was evaluated by measuring relaxation responses. Molecular mechanisms were also analyzed in isolated aorta.

Results: Treatment with danshen aqueous extract reduced body weight gain, improved serum lipid profiles, and prevented formation of fatty liver induced by HFD and OVX. In addition, danshen could increase endothelial-dependent vasorelaxation and displayed vasoprotection in OVX rats fed with HFD, primarily by stimulating nitric oxide (NO) production, up-regulating the mRNA expression of endothelial NO synthase, and down-regulating the mRNA expression of tumor necrosis factor α, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 in the isolated aortas.

Conclusions: We conclude for the first time that danshen aqueous extract could protect OVX rats fed with HFD from endothelial dysfunction. Its effect may be related to its abilities to normalize serum lipid profiles and enhance NO availability in the vascular system. Our findings indicate that danshen aqueous extract could be a promising natural supplement for postmenopausal women for preventing CVD.

Source Publication


Volume Number


Issue Number


First Page


Last Page


This document is currently not available here.