Title

Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles.

Document Type

Journal Article

Publication Date

2019

Keywords

Hybrid electric vehicles, Conventional vehicles, Real-driving emissions, Portable emission measurement system, Convoy testing mode

DOI

10.1016/j.scitotenv.2018.12.349

Abstract

Hybrid electric vehicles (HEVs) are perceived to be more energy efficient and less polluting than conventional internal combustion engine (ICE) vehicles. However, increasing evidence has shown that real-driving emissions (RDE) could be much higher than laboratory type approval limits and the advantages of HEVs over their conventional ICE counterparts under real-driving conditions have not been studied extensively. Therefore, this study was conducted to evaluate the real-driving fuel consumption and pollutant emissions performance of HEVs against their conventional ICE counterparts. Two pairs of hybrid and conventional gasoline vehicles of the same model were tested simultaneously in a novel convoy mode using two portable emission measurement systems (PEMSs), thus eliminating the effect of vehicle configurations, driving behaviour, road conditions and ambient environment on the performance comparison. The results showed that although real-driving fuel consumption for both hybrid and conventional vehicles were 44%–100% and 30%–82% higher than their laboratory results respectively, HEVs saved 23%–49% fuel relative to their conventional ICE counterparts. Pollutant emissions of all the tested vehicles were lower than the regulation limits. However, HEVs showed no reduction in HC emissions and consistently higher CO emissions compared to the conventional ICE vehicles. This could be caused by the frequent stops and restarts of the HEV engines, as well as the lowered exhaust gas temperature and reduced effectiveness of the oxidation catalyst. The findings therefore show that while achieving the fuel reduction target, hybridisation did not bring the expected benefits to urban air quality.

Source Publication

Science of The Total Environment

Volume Number

659

ISSN

0048-9697

First Page

275

Last Page

282

This document is currently not available here.

Share

COinS